Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

R. Pasteka, M. Forjan, S. Sauermann, A. Drauschke,

. 2019 ; 9 (1) : 19778. [pub] 20191224

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028701

Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ([Formula: see text] = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs ([Formula: see text] = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028701
003      
CZ-PrNML
005      
20210114154757.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-56176-6 $2 doi
035    __
$a (PubMed)31874980
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Pasteka, Richard $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria. richard.pasteka@technikum-wien.at. Brno University of Technology, Department of Biomedical Engineering, Brno, 61600, Czech Republic. richard.pasteka@technikum-wien.at.
245    10
$a Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation / $c R. Pasteka, M. Forjan, S. Sauermann, A. Drauschke,
520    9_
$a Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ([Formula: see text] = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs ([Formula: see text] = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
650    12
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    _2
$a plíce $7 D008168
650    12
$a biologické modely $7 D008954
650    12
$a polymery $7 D011108
650    12
$a umělé dýchání $7 D012121
650    12
$a mechanika dýchání $7 D015656
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Forjan, Mathias $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
700    1_
$a Sauermann, Stefan $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
700    1_
$a Drauschke, Andreas $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 19778
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31874980 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154754 $b ABA008
999    __
$a ok $b bmc $g 1609036 $s 1119881
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 19778 $e 20191224 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...