-
Je něco špatně v tomto záznamu ?
Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation
R. Pasteka, M. Forjan, S. Sauermann, A. Drauschke,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01 do 2019-12-31
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01 do 2019-12-31
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
Springer Nature - nature.com Journals - Fully Open Access
od 2011-12-01
- MeSH
- biologické modely * MeSH
- lidé MeSH
- mechanika dýchání * MeSH
- plíce MeSH
- počítačová simulace * MeSH
- polymery * MeSH
- umělé dýchání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ([Formula: see text] = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs ([Formula: see text] = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028701
- 003
- CZ-PrNML
- 005
- 20210114154757.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-56176-6 $2 doi
- 035 __
- $a (PubMed)31874980
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Pasteka, Richard $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria. richard.pasteka@technikum-wien.at. Brno University of Technology, Department of Biomedical Engineering, Brno, 61600, Czech Republic. richard.pasteka@technikum-wien.at.
- 245 10
- $a Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation / $c R. Pasteka, M. Forjan, S. Sauermann, A. Drauschke,
- 520 9_
- $a Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ([Formula: see text] = 23.98 ± 1.04 l/min, μP = -0.78 ± 0.63 hPa) and primed porcine lungs ([Formula: see text] = 18.87 ± 2.49 l/min, μP = -21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
- 650 12
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a plíce $7 D008168
- 650 12
- $a biologické modely $7 D008954
- 650 12
- $a polymery $7 D011108
- 650 12
- $a umělé dýchání $7 D012121
- 650 12
- $a mechanika dýchání $7 D015656
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Forjan, Mathias $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
- 700 1_
- $a Sauermann, Stefan $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
- 700 1_
- $a Drauschke, Andreas $u University of Applied Sciences Technikum Wien, Department of Life Science Engineering, Vienna, 1200, Austria.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 19778
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31874980 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154754 $b ABA008
- 999 __
- $a ok $b bmc $g 1609036 $s 1119881
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 19778 $e 20191224 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105