• Je něco špatně v tomto záznamu ?

Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation

P. Marracino, D. Havelka, J. Průša, M. Liberti, J. Tuszynski, AT. Ayoub, F. Apollonio, M. Cifra,

. 2019 ; 9 (1) : 10477. [pub] 20190719

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028872

Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028872
003      
CZ-PrNML
005      
20210114155241.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-46636-4 $2 doi
035    __
$a (PubMed)31324834
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Marracino, Paolo $u Rise Technology srl S. Martino di Lupari, Veneto, 35018, Italy.
245    10
$a Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation / $c P. Marracino, D. Havelka, J. Průša, M. Liberti, J. Tuszynski, AT. Ayoub, F. Apollonio, M. Cifra,
520    9_
$a Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
650    _2
$a vazebná místa $7 D001665
650    12
$a elektrická stimulace $x metody $7 D004558
650    _2
$a lidé $7 D006801
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a statická elektřina $7 D055672
650    _2
$a tubulin $x fyziologie $7 D014404
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Havelka, Daniel $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
700    1_
$a Průša, Jiří $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
700    1_
$a Liberti, Micaela $u Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, 00184, Rome, Italy.
700    1_
$a Tuszynski, Jack $u Department of Physics, University of Alberta, Alberta, T6G 1Z2, Canada. DIMEAS, Politecnico di Torino, 10129, Turin, Italy.
700    1_
$a Ayoub, Ahmed T $u Medicinal Chemistry Department, Heliopolis University, Cairo, 11777, Egypt.
700    1_
$a Apollonio, Francesca $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
700    1_
$a Cifra, Michal $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic. cifra@ufe.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 10477
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31324834 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114155240 $b ABA008
999    __
$a ok $b bmc $g 1609207 $s 1120052
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 10477 $e 20190719 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace