-
Je něco špatně v tomto záznamu ?
Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation
P. Marracino, D. Havelka, J. Průša, M. Liberti, J. Tuszynski, AT. Ayoub, F. Apollonio, M. Cifra,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
- MeSH
- elektrická stimulace * metody MeSH
- lidé MeSH
- simulace molekulární dynamiky * MeSH
- statická elektřina MeSH
- tubulin fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
Institute of Photonics and Electronics of the Czech Academy of Sciences Prague 18200 Czech Republic
Medicinal Chemistry Department Heliopolis University Cairo 11777 Egypt
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028872
- 003
- CZ-PrNML
- 005
- 20210114155241.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-46636-4 $2 doi
- 035 __
- $a (PubMed)31324834
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Marracino, Paolo $u Rise Technology srl S. Martino di Lupari, Veneto, 35018, Italy.
- 245 10
- $a Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation / $c P. Marracino, D. Havelka, J. Průša, M. Liberti, J. Tuszynski, AT. Ayoub, F. Apollonio, M. Cifra,
- 520 9_
- $a Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
- 650 _2
- $a vazebná místa $7 D001665
- 650 12
- $a elektrická stimulace $x metody $7 D004558
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a statická elektřina $7 D055672
- 650 _2
- $a tubulin $x fyziologie $7 D014404
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Havelka, Daniel $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- 700 1_
- $a Průša, Jiří $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- 700 1_
- $a Liberti, Micaela $u Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, 00184, Rome, Italy.
- 700 1_
- $a Tuszynski, Jack $u Department of Physics, University of Alberta, Alberta, T6G 1Z2, Canada. DIMEAS, Politecnico di Torino, 10129, Turin, Italy.
- 700 1_
- $a Ayoub, Ahmed T $u Medicinal Chemistry Department, Heliopolis University, Cairo, 11777, Egypt.
- 700 1_
- $a Apollonio, Francesca $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- 700 1_
- $a Cifra, Michal $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic. cifra@ufe.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 10477
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31324834 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114155240 $b ABA008
- 999 __
- $a ok $b bmc $g 1609207 $s 1120052
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 10477 $e 20190719 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105