Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31324834
PubMed Central
PMC6642143
DOI
10.1038/s41598-019-46636-4
PII: 10.1038/s41598-019-46636-4
Knihovny.cz E-zdroje
- MeSH
- elektrická stimulace * metody MeSH
- lidé MeSH
- simulace molekulární dynamiky * MeSH
- statická elektřina MeSH
- tubulin fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- tubulin MeSH
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
Department of Physics University of Alberta Alberta T6G 1Z2 Canada
DIMEAS Politecnico di Torino 10129 Turin Italy
Institute of Photonics and Electronics of the Czech Academy of Sciences Prague 18200 Czech Republic
Medicinal Chemistry Department Heliopolis University Cairo 11777 Egypt
Zobrazit více v PubMed
Simonson T. Electrostatics and dynamics of proteins. Reports on Progress in Physics. 2003;66:737. doi: 10.1088/0034-4885/66/5/202. DOI
Tsai M-Y, et al. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding: Electrostatic Energy Landscapes for Folding and Binding. Protein Science. 2016;25:255–269. doi: 10.1002/pro.2751. PubMed DOI PMC
Ren P, et al. Biomolecular electrostatics and solvation: a computational perspective. Quarterly reviews of biophysics. 2012;45:427–491. doi: 10.1017/S003358351200011X. PubMed DOI PMC
Fried SD, Bagchi S, Boxer SG. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science. 2014;346:1510–1514. doi: 10.1126/science.1259802. PubMed DOI PMC
de Graff AM, Hazoglou MJ, Dill KA. Highly Charged Proteins: The Achilles’ Heel of Aging Proteomes. Structure. 2016;24:329–336. doi: 10.1016/j.str.2015.11.006. PubMed DOI
Beebe SJ. Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry. 2015;103:52–59. doi: 10.1016/j.bioelechem.2014.08.014. PubMed DOI
Apollonio F, et al. Mixed Quantum-Classical Methods for Molecular Simulations of Biochemical Reactions With Microwave Fields: The Case Study of Myoglobin. IEEE Transactions on Microwave Theory and Techniques. 2008;56:2511–2519. doi: 10.1109/TMTT.2008.2005890. DOI
Xu D, Phillips JC, Schulten K. Protein response to external electric fields: relaxation, hysteresis, and echo. The Journal of Physical Chemistry. 1996;100:12108–12121. doi: 10.1021/jp960076a. DOI
Budi A, Legge FS, Treutlein H, Yarovsky I. Electric Field Effects on Insulin Chain-B Conformation. The Journal of Physical Chemistry B. 2005;109:22641–22648. doi: 10.1021/jp052742q. PubMed DOI
Budi A, Legge FS, Treutlein H, Yarovsky I. Effect of Frequency on Insulin Response to Electric Field Stress. The Journal of Physical Chemistry B. 2007;111:5748–5756. doi: 10.1021/jp067248g. PubMed DOI
Wang X, Li Y, He X, Chen S, Zhang JZH. Effect of Strong Electric Field on the Conformational Integrity of Insulin. The Journal of Physical Chemistry A. 2014;118:8942–8952. doi: 10.1021/jp501051r. PubMed DOI
English NJ, Mooney DA. Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study. The Journal of Chemical Physics. 2007;126:091105. doi: 10.1063/1.2515315. PubMed DOI
English NJ, Solomentsev GY, O’Brien P. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. The Journal of Chemical Physics. 2009;131:035106. doi: 10.1063/1.3184794. PubMed DOI
Solomentsev GY, English NJ, Mooney DA. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: A nonequilibrium molecular dynamics study. The Journal of Chemical Physics. 2010;133:235102. doi: 10.1063/1.3518975. PubMed DOI
Todorova N, Bentvelzen A, English NJ, Yarovsky I. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. The Journal of Chemical Physics. 2016;144:085101. doi: 10.1063/1.4941108. PubMed DOI
Toschi F, Lugli F, Biscarini F, Zerbetto F. Effects of Electric Field Stress on a β-Amyloid Peptide. The Journal of Physical Chemistry B. 2009;113:369–376. doi: 10.1021/jp807896g. PubMed DOI
Lugli F, Toschi F, Biscarini F, Zerbetto F. Electric Field Effects on Short Fibrils of Aβ Amyloid Peptides. Journal of Chemical Theory and Computation. 2010;6:3516–3526. doi: 10.1021/ct1001335. PubMed DOI
Singh A, Orsat V, Raghavan V. Soybean Hydrophobic Protein Response to External Electric Field: A Molecular Modeling Approach. Biomolecules. 2013;3:168–179. doi: 10.3390/biom3010168. PubMed DOI PMC
Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A. Effect of High Exogenous Electric Pulses on Protein Conformation: Myoglobin as a Case Study. The Journal of Physical Chemistry B. 2013;117:2273–2279. doi: 10.1021/jp309857b. PubMed DOI
Marracino, P. Technology of High-Intensity Electric-Field Pulses: A Way to Control Protein Unfolding. Journal of Physical Chemistry & Biophysics03 (2013).
Ojeda-May P, Garcia ME. Electric Field-Driven Disruption of a Native β-Sheet Protein Conformation and Generation of a Helix-Structure. Biophysical Journal. 2010;99:595–599. doi: 10.1016/j.bpj.2010.04.040. PubMed DOI PMC
Astrakas L, Gousias C, Tzaphlidou M. Electric field effects on chignolin conformation. Journal of Applied Physics. 2011;109:094702. doi: 10.1063/1.3585867. DOI
Astrakas LG, Gousias C, Tzaphlidou M. Structural destabilization of chignolin under the influence of oscillating electric fields. Journal of Applied Physics. 2012;111:074702. doi: 10.1063/1.3699389. DOI
Bernardi, M. et al. Controlling ionic conductivity through transprotein electropores in human aquaporin 4: a non-equilibrium molecular-dynamics study. Physical Chemistry Chemical Physics 1–8 (2019). PubMed
Bernardi M, et al. Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study. The Journal of Chemical Physics. 2018;149:245102. doi: 10.1063/1.5044665. PubMed DOI
Marracino P, et al. Transprotein-Electropore Characterization: A Molecular Dynamics Investigation on Human AQP4. ACS Omega. 2018;3:15361–15369. doi: 10.1021/acsomega.8b02230. PubMed DOI PMC
Marracino P, et al. Human Aquaporin 4 Gating Dynamics under Perpendicularly-Oriented Electric-Field Impulses: A Molecular Dynamics Study. International Journal of Molecular Sciences. 2016;17:1133. doi: 10.3390/ijms17071133. PubMed DOI PMC
Reale R, et al. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: A molecular dynamics study of field effects and relaxation. The Journal of Chemical Physics. 2013;139:205101. doi: 10.1063/1.4832383. PubMed DOI
Zonta F, et al. Cues to Opening Mechanisms From in Silico Electric Field Excitation of Cx26 Hemichannel and in Vitro Mutagenesis Studies in HeLa Transfectans. Frontiers in Molecular Neuroscience. 2018;11:170. doi: 10.3389/fnmol.2018.00170. PubMed DOI PMC
Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proceedings of the National Academy of Sciences. 2011;108:6109–6114. doi: 10.1073/pnas.1102724108. PubMed DOI PMC
Aragonès AC, et al. Electrostatic catalysis of a Diels–Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI
Warshel A, et al. Electrostatic Basis for Enzyme Catalysis. Chemical Reviews. 2006;106:3210–3235. doi: 10.1021/cr0503106. PubMed DOI
Hekstra DR, et al. Electric-field-stimulated protein mechanics. Nature. 2016;540:400–405. doi: 10.1038/nature20571. PubMed DOI PMC
Mershin A, Kolomenski AA, Schuessler HA, Nanopoulos DV. Tubulin dipole moment, dielectric constant and quantum behavior: computer simulations, experimental results and suggestions. Biosystems. 2004;77:73–85. doi: 10.1016/j.biosystems.2004.04.003. PubMed DOI
Tuszynski JA, et al. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. The International Journal of Developmental Biology. 2006;50:341–358. doi: 10.1387/ijdb.052063jt. PubMed DOI
Alberts, B. Molecular biology of the cell (Garland science, 2017).
Kirson ED, et al. Disruption of Cancer Cell Replication by Alternating Electric Fields. Cancer Research. 2004;64:3288–3295. doi: 10.1158/0008-5472.CAN-04-0083. PubMed DOI
Kirson ED, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences. 2007;104:10152–10157. doi: 10.1073/pnas.0702916104. PubMed DOI PMC
Carr L, et al. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Scientific Reports. 2017;7:41267. doi: 10.1038/srep41267. PubMed DOI PMC
Pokorný J, Jelnek F, Trkal V. Electric field around microtubules. Bioelectrochemistry and Bioenergetics. 1998;45:239–245. doi: 10.1016/S0302-4598(98)00100-7. DOI
Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R. Vibrations in microtubules. Journal of Biological Physics. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC
Pokorný J. Conditions for coherent vibrations in the cytoskeleton. Bioelectrochemistry and Bioenergetics. 1999;48:267–271. doi: 10.1016/S0302-4598(99)00016-1. PubMed DOI
Kučera O, Havelka D. Mechano-electrical vibrations of microtubules—Link to subcellular morphology. Biosystems. 2012;109:346–355. doi: 10.1016/j.biosystems.2012.04.009. PubMed DOI
Havelka D, Deriu MA, Cifra M, Kučera O. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach. Scientific Reports. 2017;7:4227. doi: 10.1038/s41598-017-04272-w. PubMed DOI PMC
Cifra M, Pokorný J, Havelka D, Kučera O. Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems. 2010;100:122–131. doi: 10.1016/j.biosystems.2010.02.007. PubMed DOI
Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J. High-frequency electric field and radiation characteristics of cellular microtubule network. Journal of theoretical biology. 2011;286:31–40. doi: 10.1016/j.jtbi.2011.07.007. PubMed DOI
Kucera O, Cervinkova K, Nerudova M, Cifra M. Spectral perspective on the electromagnetic activity of cells. Current topics in medicinal chemistry. 2015;15:513–522. doi: 10.2174/1568026615666150225103105. PubMed DOI
Saeidi, H. R., Lohrasebi, A. & Mahnam, K. External electric field effects on the mechanical properties of the αβ-tubulin dimer of microtubules: a molecular dynamics study. Journal of Molecular Modeling20 (2014). PubMed
Setayandeh SS, Lohrasebi A. The effects of external electric fields of 900 MHz and 2450 MHz frequencies on αβ-tubulin dimer stabilized by paclitaxel: Molecular dynamics approach. Journal of Theoretical and Computational Chemistry. 2016;15:1650010. doi: 10.1142/S0219633616500103. DOI
Lefèvre J, et al. The C Terminus of Tubulin, a Versatile Partner for Cationic Molecules: Binding of Tau, Polyamines, and Calcium. Journal of Biological Chemistry. 2011;286:3065–3078. doi: 10.1074/jbc.M110.144089. PubMed DOI PMC
Janke C, Chloë Bulinski J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nature Reviews Molecular Cell Biology. 2011;12:773–786. doi: 10.1038/nrm3227. PubMed DOI
Timmons JJ, Preto J, Tuszynski JA, Wong ET. Tubulin’s response to external electric fields by molecular dynamics simulations. Plos one. 2018;13:e0202141. doi: 10.1371/journal.pone.0202141. PubMed DOI PMC
Conde C, Cáceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience. 2009;10:319–332. doi: 10.1038/nrn2631. PubMed DOI
Jones HM, Kunhardt EE. Pulsed dielectric breakdown of pressurized water and salt solutions. Journal of Applied Physics. 1995;77:795–805. doi: 10.1063/1.359002. DOI
Stygar WA, et al. Water-dielectric-breakdown relation for the design of large-area multimegavolt pulsed-power systems. Physical Review Special Topics - Accelerators and Beams. 2006;9:070401. doi: 10.1103/PhysRevSTAB.9.070401. DOI
Skiniotis G, et al. Modulation of kinesin binding by the C-termini of tubulin. The EMBO Journal. 2004;23:989–999. doi: 10.1038/sj.emboj.7600118. PubMed DOI PMC
Anders KR, Botstein D. Dominant-lethal α-tubulin mutants defective in microtubule depolymerization in yeast. Molecular biology of the cell. 2001;12:3973–3986. doi: 10.1091/mbc.12.12.3973. PubMed DOI PMC
Ayoub A, et al. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy. International Journal of Molecular Sciences. 2017;18:2042. doi: 10.3390/ijms18102042. PubMed DOI PMC
Amadei A, Marracino P. Theoretical–computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv. 2015;5:96551–96561. doi: 10.1039/C5RA15605J. DOI
Janke C. The tubulin code: Molecular components, readout mechanisms, and functions. The Journal of Cell Biology. 2014;206:461–472. doi: 10.1083/jcb.201406055. PubMed DOI PMC
Gadadhar S, Bodakuntla S, Natarajan K, Janke C. The tubulin code at a glance. Journal of Cell Science. 2017;130:1347–1353. doi: 10.1242/jcs.199471. PubMed DOI
Ayoub AT, Klobukowski M, Tuszynski J. Similarity-based virtual screening for microtubule stabilizers reveals novel antimitotic scaffold. Journal of Molecular Graphics and Modelling. 2013;44:188–196. doi: 10.1016/j.jmgm.2013.05.008. PubMed DOI
Leontyev I, Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Physical Chemistry Chemical Physics. 2011;13:2613. doi: 10.1039/c0cp01971b. PubMed DOI
Zhang C, et al. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. Journal of Chemical Theory and Computation. 2018;14:2084–2108. doi: 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Wang L-P, et al. Systematic Improvement of a Classical Molecular Model of Water. The Journal of Physical Chemistry B. 2013;117:9956–9972. doi: 10.1021/jp403802c. PubMed DOI PMC
Jing Zhifeng, Liu Chengwen, Cheng Sara Y., Qi Rui, Walker Brandon D., Piquemal Jean-Philip, Ren Pengyu. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annual Review of Biophysics. 2019;48(1):371–394. doi: 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC
Grant BJ, et al. Electrostatically Biased Binding of Kinesin to Microtubules. PLoS Biology. 2011;9:e1001207. doi: 10.1371/journal.pbio.1001207. PubMed DOI PMC
Gigant B, et al. Structure of a kinesin–tubulin complex and implications for kinesin motility. Nature Structural & Molecular Biology. 2013;20:1001–1007. doi: 10.1038/nsmb.2624. PubMed DOI
Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nature Cell Biology. 2014;16:335. doi: 10.1038/ncb2920. PubMed DOI PMC
Wang G, Dunbrack RL. PISCES: a protein sequence culling server. Bioinformatics. 2003;19:1589–1591. doi: 10.1093/bioinformatics/btg224. PubMed DOI
Felder CE, Prilusky J, Silman I, Sussman JL. A server and database for dipole moments of proteins. Nucleic Acids Research. 2007;35:W512–W521. doi: 10.1093/nar/gkm307. PubMed DOI PMC
Alushin GM, et al. High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis. Cell. 2014;157:1117–1129. doi: 10.1016/j.cell.2014.03.053. PubMed DOI PMC
Chemical Computing Group, I. Molecular operating environment (MOE) (2016).
Consortium U, & others UniProt: the universal protein knowledgebase. Nucleic acids research. 2018;46:2699. doi: 10.1093/nar/gky092. PubMed DOI PMC
Löwe J, Li H, Downing K, Nogales E. Refined structure of αβ-tubulin at 3.5 å resolution. Journal of Molecular Biology. 2001;313:1045–1057. doi: 10.1006/jmbi.2001.5077. PubMed DOI
Ravelli RB, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202. doi: 10.1038/nature02393. PubMed DOI
Wang Y, et al. Structural Insights into the Pharmacophore of Vinca Domain Inhibitors of Microtubules. Molecular Pharmacology. 2016;89:233–242. doi: 10.1124/mol.115.100149. PubMed DOI
Golovin A, Dimitropoulos D, Oldfield T, Rachedi A, Henrick K. MSDsite: A database search and retrieval system for the analysis and viewing of bound ligands and active sites. Proteins: Structure, Function, and Bioinformatics. 2004;58:190–199. doi: 10.1002/prot.20288. PubMed DOI
Churchill CDM, Klobukowski M, Tuszynski JA. Elucidating the Mechanism of Action of the Clinically Approved Taxanes: A Comprehensive Comparison of Local and Allosteric Effects. Chemical Biology & Drug Design. 2015;86:1253–1266. doi: 10.1111/cbdd.12595. PubMed DOI
Spasevska I, et al. Modeling the Colchicum autumnale Tubulin and a Comparison of Its Interaction with Colchicine to Human Tubulin. International Journal of Molecular Sciences. 2017;18:1676. doi: 10.3390/ijms18081676. PubMed DOI PMC
Berendsen H, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Evans, D. J. & Morriss, G. P. Statistical mechanics of nonequilibrium liquids (ANU E Press, Canberra), [2nd] ed. edn. (2007).
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Darden T, York D, Pedersen L. Particle mesh Ewald: An N. log (N) method for Ewald sums in large systems. The Journal of chemical physics. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Duan Y, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry. 2003;24:1999–2012. doi: 10.1002/jcc.10349. PubMed DOI
Marracino P, Liberti M, d’Inzeo G, Apollonio F. Water response to intense electric fields: A molecular dynamics study: Intense Electric Fields on Ionic Solutions. Bioelectromagnetics. 2015;36:377–385. doi: 10.1002/bem.21916. PubMed DOI
Marracino, P. et al. Signal transduction on enzymes: the Effect of electromagnetic field stimuli on superoxide dismutase (SOD). In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5674–5677 (IEEE, San Diego, CA, 2012). PubMed
Del Galdo S, Marracino P, D’Abramo M, Amadei A. In silico characterization of protein partial molecular volumes and hydration shells. Physical Chemistry Chemical Physics. 2015;17:31270–31277. doi: 10.1039/C5CP05891K. PubMed DOI
Electro-detachment of kinesin motor domain from microtubule in silico
Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network
Molecular dynamics simulation dataset of a microtubule ring in electric field
Electro-opening of a microtubule lattice in silico
Challenges in coupling atmospheric electricity with biological systems
Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor