• Something wrong with this record ?

Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases

P. Barennes, V. Quiniou, M. Shugay, ES. Egorov, AN. Davydov, DM. Chudakov, I. Uddin, M. Ismail, T. Oakes, B. Chain, A. Eugster, K. Kashofer, PP. Rainer, S. Darko, A. Ransier, DC. Douek, D. Klatzmann, E. Mariotti-Ferrandiz

. 2021 ; 39 (2) : 236-245. [pub] 20200907

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't

Grant support
Department of Health - United Kingdom

E-resources Online Full text

NLK ProQuest Central from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2000-01-01 to 1 year ago

Monitoring the T cell receptor (TCR) repertoire in health and disease can provide key insights into adaptive immune responses, but the accuracy of current TCR sequencing (TCRseq) methods is unclear. In this study, we systematically compared the results of nine commercial and academic TCRseq methods, including six rapid amplification of complementary DNA ends (RACE)-polymerase chain reaction (PCR) and three multiplex-PCR approaches, when applied to the same T cell sample. We found marked differences in accuracy and intra- and inter-method reproducibility for T cell receptor α (TRA) and T cell receptor β (TRB) TCR chains. Most methods showed a lower ability to capture TRA than TRB diversity. Low RNA input generated non-representative repertoires. Results from the 5' RACE-PCR methods were consistent among themselves but differed from the RNA-based multiplex-PCR results. Using an in silico meta-repertoire generated from 108 replicates, we found that one genomic DNA-based method and two non-unique molecular identifier (UMI) RNA-based methods were more sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype quantification accuracy of the latter.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011548
003      
CZ-PrNML
005      
20210713111408.0
007      
ta
008      
210420s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41587-020-0656-3 $2 doi
035    __
$a (PubMed)32895550
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Barennes, Pierre $u Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France ; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
245    10
$a Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases / $c P. Barennes, V. Quiniou, M. Shugay, ES. Egorov, AN. Davydov, DM. Chudakov, I. Uddin, M. Ismail, T. Oakes, B. Chain, A. Eugster, K. Kashofer, PP. Rainer, S. Darko, A. Ransier, DC. Douek, D. Klatzmann, E. Mariotti-Ferrandiz
520    9_
$a Monitoring the T cell receptor (TCR) repertoire in health and disease can provide key insights into adaptive immune responses, but the accuracy of current TCR sequencing (TCRseq) methods is unclear. In this study, we systematically compared the results of nine commercial and academic TCRseq methods, including six rapid amplification of complementary DNA ends (RACE)-polymerase chain reaction (PCR) and three multiplex-PCR approaches, when applied to the same T cell sample. We found marked differences in accuracy and intra- and inter-method reproducibility for T cell receptor α (TRA) and T cell receptor β (TRB) TCR chains. Most methods showed a lower ability to capture TRA than TRB diversity. Low RNA input generated non-representative repertoires. Results from the 5' RACE-PCR methods were consistent among themselves but differed from the RNA-based multiplex-PCR results. Using an in silico meta-repertoire generated from 108 replicates, we found that one genomic DNA-based method and two non-unique molecular identifier (UMI) RNA-based methods were more sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype quantification accuracy of the latter.
650    _2
$a dospělí $7 D000328
650    _2
$a zkreslení výsledků (epidemiologie) $7 D015982
650    _2
$a počítačová simulace $7 D003198
650    _2
$a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
650    _2
$a lidé $7 D006801
650    _2
$a Jurkat buňky $7 D019169
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a receptory antigenů T-buněk $x genetika $7 D011948
650    _2
$a receptory antigenů T-buněk alfa-beta $x genetika $7 D016693
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Intramural $7 D052060
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Quiniou, Valentin $u Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France ;
700    1_
$a Shugay, Mikhail $u Center of Life Sciences, Skoltech, Moscow, Russia ; Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia ; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
700    1_
$a Egorov, Evgeniy S $u Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
700    1_
$a Davydov, Alexey N $u Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia
700    1_
$a Chudakov, Dmitriy M $u Center of Life Sciences, Skoltech, Moscow, Russia ; Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia ; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia ; Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia
700    1_
$a Uddin, Imran $u Division of Infection and Immunity, University College London, London, UK
700    1_
$a Ismail, Mazlina $u Division of Infection and Immunity, University College London, London, UK
700    1_
$a Oakes, Theres $u Division of Infection and Immunity, University College London, London, UK
700    1_
$a Chain, Benny $u Division of Infection and Immunity, University College London, London, UK
700    1_
$a Eugster, Anne $u DFG-Centre for Regenerative Therapies Dresden, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
700    1_
$a Kashofer, Karl $u Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
700    1_
$a Rainer, Peter P $u Division of Cardiology, Medical University of Graz, Graz, Austria $u BioTechMed-Graz, Graz, Austria
700    1_
$a Darko, Samuel $u Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
700    1_
$a Ransier, Amy $u Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
700    1_
$a Douek, Daniel C $u Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
700    1_
$a Klatzmann, David $u Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France ; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
700    1_
$a Mariotti-Ferrandiz, Encarnita $u Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France. encarnita.mariotti@sorbonne-universite.fr ; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France. encarnita.mariotti@sorbonne-universite.fr
773    0_
$w MED00003457 $t Nature biotechnology $x 1546-1696 $g Roč. 39, č. 2 (2021), s. 236-245
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32895550 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210713111405 $b ABA008
999    __
$a ok $b bmc $g 1650047 $s 1131927
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 39 $c 2 $d 236-245 $e 20200907 $i 1546-1696 $m Nature biotechnology $n Nat Biotechnol $x MED00003457
GRA    __
$p Department of Health $2 United Kingdom
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...