-
Je něco špatně v tomto záznamu ?
TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting
M. Lexa, P. Jedlicka, I. Vanat, M. Cervenansky, E. Kejnovsky
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1996 do Před 1 rokem
PubMed Central
od 2007
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1998-01-01
Oxford Journals Open Access Collection
od 1985-01-01 do 2022-09-30
Oxford Journals Open Access Collection
od 1985-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
- MeSH
- algoritmy MeSH
- molekulární evoluce MeSH
- retroelementy * genetika MeSH
- software * MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOTIVATION: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements and the order in which they have been inserted is important for genome and transposon evolution studies. However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs. RESULTS: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of natural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions. AVAILABILITY AND IMPLEMENTATION: http://gitlab.fi.muni.cz/lexa/nested. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21011707
- 003
- CZ-PrNML
- 005
- 20210507101624.0
- 007
- ta
- 008
- 210420s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/bioinformatics/btaa632 $2 doi
- 035 __
- $a (PubMed)32663247
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Lexa, Matej $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic $u Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
- 245 10
- $a TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting / $c M. Lexa, P. Jedlicka, I. Vanat, M. Cervenansky, E. Kejnovsky
- 520 9_
- $a MOTIVATION: Transposable elements (TEs) in eukaryotes often get inserted into one another, forming sequences that become a complex mixture of full-length elements and their fragments. The reconstruction of full-length elements and the order in which they have been inserted is important for genome and transposon evolution studies. However, the accumulation of mutations and genome rearrangements over evolutionary time makes this process error-prone and decreases the efficiency of software aiming to recover all nested full-length TEs. RESULTS: We created software that uses a greedy recursive algorithm to mine increasingly fragmented copies of full-length LTR retrotransposons in assembled genomes and other sequence data. The software called TE-greedy-nester considers not only sequence similarity but also the structure of elements. This new tool was tested on a set of natural and synthetic sequences and its accuracy was compared to similar software. We found TE-greedy-nester to be superior in a number of parameters, namely computation time and full-length TE recovery in highly nested regions. AVAILABILITY AND IMPLEMENTATION: http://gitlab.fi.muni.cz/lexa/nested. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a transpozibilní elementy DNA $7 D004251
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 12
- $a retroelementy $x genetika $7 D018626
- 650 12
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jedlicka, Pavel $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic
- 700 1_
- $a Vanat, Ivan $u Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
- 700 1_
- $a Cervenansky, Michal $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic $u Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
- 700 1_
- $a Kejnovsky, Eduard $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic
- 773 0_
- $w MED00008115 $t Bioinformatics (Oxford, England) $x 1367-4811 $g Roč. 36, č. 20 (2020), s. 4991-4999
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32663247 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507101624 $b ABA008
- 999 __
- $a ok $b bmc $g 1650162 $s 1132086
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 36 $c 20 $d 4991-4999 $e 20201222 $i 1367-4811 $m Bioinformatics $n Bioinformatics $x MED00008115
- LZP __
- $a Pubmed-20210420