• Je něco špatně v tomto záznamu ?

Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin

L. Kumar, J. Planas-Iglesias, C. Harms, S. Kamboj, D. Wright, J. Klein-Seetharaman, SK. Sarkar

. 2020 ; 10 (1) : 20615. [pub] 20201126

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21011844

Grantová podpora
RGM137295A NIH HHS - United States

The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011844
003      
CZ-PrNML
005      
20210714093823.0
007      
ta
008      
210420s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-020-77699-3 $2 doi
035    __
$a (PubMed)33244162
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kumar, Lokender $u Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
245    10
$a Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin / $c L. Kumar, J. Planas-Iglesias, C. Harms, S. Kamboj, D. Wright, J. Klein-Seetharaman, SK. Sarkar
520    9_
$a The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.
650    _2
$a katalýza $7 D002384
650    _2
$a katalytická doména $x fyziologie $7 D020134
650    _2
$a Escherichia coli $x metabolismus $7 D004926
650    _2
$a fibrinogen $x metabolismus $7 D005340
650    _2
$a hemopexin $x metabolismus $7 D006466
650    _2
$a kinetika $7 D007700
650    _2
$a matrixová metaloproteinasa 1 $x metabolismus $7 D020781
650    _2
$a proteinové domény $x fyziologie $7 D000072417
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Planas-Iglesias, Joan $u Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK ; Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
700    1_
$a Harms, Chase $u Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
700    1_
$a Kamboj, Sumaer $u Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
700    1_
$a Wright, Derek $u Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
700    1_
$a Klein-Seetharaman, Judith $u Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK ; Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
700    1_
$a Sarkar, Susanta K $u Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA. ssarkar@mines.edu
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 20615
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33244162 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210714093821 $b ABA008
999    __
$a ok $b bmc $g 1650270 $s 1132223
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 1 $d 20615 $e 20201126 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a RGM137295A $p NIH HHS $2 United States
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...