-
Je něco špatně v tomto záznamu ?
Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations
B. Frauscher, N. von Ellenrieder, I. Dolezalova, S. Bouhadoun, J. Gotman, L. Peter-Derex
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
FDN 143208
CIHR - Canada
NLK
Free Medical Journals
od 1981 do Před 6 měsíci
PubMed Central
od 1981 do Před 6 měsíci
Europe PubMed Central
od 1981 do Před 6 měsíci
Open Access Digital Library
od 1981-01-01
Open Access Digital Library
od 1981-01-01
- MeSH
- dospělí MeSH
- elektrokortikografie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování mozku MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- polysomnografie MeSH
- spánek REM fyziologie MeSH
- stadia spánku fyziologie MeSH
- vlnková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG performed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.SIGNIFICANCE STATEMENT Sawtooth waves (STW) present as scalp electroencephalographic (EEG) bursts of slow waves contrasting with the low-voltage fast desynchronized activity of REM sleep. Little is known about their cortical origin and function. Using combined stereo-EEG/polysomnography possible only in the human brain during presurgical epilepsy evaluation, we explored the intracranial correlates of STW. We found that a large set of regions in the parietal, frontal, and insular cortices shows increases in 2-4 Hz power during scalp EEG STW, that STW are associated with a strong and widespread increase in high frequencies, and that these slow and fast activities exhibit a high spatiotemporal heterogeneity. These electrophysiological properties suggest that STW may be involved in cognitive processes during REM sleep.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21011880
- 003
- CZ-PrNML
- 005
- 20210507104751.0
- 007
- ta
- 008
- 210420s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1523/JNEUROSCI.1586-20.2020 $2 doi
- 035 __
- $a (PubMed)33055279
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Frauscher, Birgit $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada birgit.frauscher@mcgill.ca laure.peter-derex@chu-lyon.fr laure.peter@mail.mcgill.ca
- 245 10
- $a Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations / $c B. Frauscher, N. von Ellenrieder, I. Dolezalova, S. Bouhadoun, J. Gotman, L. Peter-Derex
- 520 9_
- $a Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG performed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.SIGNIFICANCE STATEMENT Sawtooth waves (STW) present as scalp electroencephalographic (EEG) bursts of slow waves contrasting with the low-voltage fast desynchronized activity of REM sleep. Little is known about their cortical origin and function. Using combined stereo-EEG/polysomnography possible only in the human brain during presurgical epilepsy evaluation, we explored the intracranial correlates of STW. We found that a large set of regions in the parietal, frontal, and insular cortices shows increases in 2-4 Hz power during scalp EEG STW, that STW are associated with a strong and widespread increase in high frequencies, and that these slow and fast activities exhibit a high spatiotemporal heterogeneity. These electrophysiological properties suggest that STW may be involved in cognitive processes during REM sleep.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mapování mozku $7 D001931
- 650 _2
- $a mozková kůra $x fyziologie $7 D002540
- 650 12
- $a elektrokortikografie $7 D000069280
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a polysomnografie $7 D017286
- 650 _2
- $a stadia spánku $x fyziologie $7 D012894
- 650 _2
- $a spánek REM $x fyziologie $7 D012895
- 650 _2
- $a vlnková analýza $7 D058067
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a von Ellenrieder, Nicolás $u Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- 700 1_
- $a Dolezalova, Irena $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic, 656 91 Brno
- 700 1_
- $a Bouhadoun, Sarah $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- 700 1_
- $a Gotman, Jean $u Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- 700 1_
- $a Peter-Derex, Laure $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada birgit.frauscher@mcgill.ca laure.peter-derex@chu-lyon.fr laure.peter@mail.mcgill.ca $u Center for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, F-69000, France $u Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon, F-69000, France
- 773 0_
- $w MED00002840 $t The Journal of neuroscience : the official journal of the Society for Neuroscience $x 1529-2401 $g Roč. 40, č. 46 (2020), s. 8900-8912
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33055279 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507104749 $b ABA008
- 999 __
- $a ok $b bmc $g 1650295 $s 1132259
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 40 $c 46 $d 8900-8912 $e 20201014 $i 1529-2401 $m The Journal of neuroscience $n J Neurosci $x MED00002840
- GRA __
- $a FDN 143208 $p CIHR $2 Canada
- LZP __
- $a Pubmed-20210420