• Je něco špatně v tomto záznamu ?

Unique Electronic Structures of the Highly Ruffled Hemes in Heme-Degrading Enzymes of Staphylococcus aureus, IsdG and IsdI, by Resonance Raman and Electron Paramagnetic Resonance Spectroscopies

S. Takahashi, S. Nambu, T. Matsui, H. Fujii, H. Ishikawa, Y. Mizutani, K. Tsumoto, M. Ikeda-Saito

. 2020 ; 59 (40) : 3918-3928. [pub] 20200929

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012035

Staphylococcus aureus uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-β-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI. Heme complexed to IsdG and IsdI is coordinated by a neutral histidine. The trans ligand is hydroxide in the ferric alkaline form of both proteins. In the ferric neutral form at pH 6.0, heme is six-coordinated with water as the sixth ligand for IsdG and is in the mixture of the five-coordinated and six-coordinated species for IsdI. In the ferrous CO-bound form, CO is strongly hydrogen bonded with a distal residue. The marker lines, ν2 and ν3, appear at frequencies that are distinct from other proteins having planar hemes. The EPR spectra for the ferric hydroxide and cyanide states might be explained by assuming the thermal mixing of the d-electron configurations, (dxy)2(dxz,dyz)3 and (dxz,dyz)4(dxy)1. The fraction for the latter becomes larger for the ferric cyanide form. In the ferric neutral state at pH 6.0, the quantum mechanical mixing of the high and intermediate spin configurations might explain the peculiar frequencies of ν2 and ν3 in the RR spectra. The heme ruffling imposed by IsdG and IsdI gives rise to unique electronic structures of heme, which are expected to modulate the first and subsequent steps of the heme oxygenation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012035
003      
CZ-PrNML
005      
20210507101620.0
007      
ta
008      
210420s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biochem.0c00731 $2 doi
035    __
$a (PubMed)32988197
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Takahashi, Satoshi $u Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
245    10
$a Unique Electronic Structures of the Highly Ruffled Hemes in Heme-Degrading Enzymes of Staphylococcus aureus, IsdG and IsdI, by Resonance Raman and Electron Paramagnetic Resonance Spectroscopies / $c S. Takahashi, S. Nambu, T. Matsui, H. Fujii, H. Ishikawa, Y. Mizutani, K. Tsumoto, M. Ikeda-Saito
520    9_
$a Staphylococcus aureus uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-β-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI. Heme complexed to IsdG and IsdI is coordinated by a neutral histidine. The trans ligand is hydroxide in the ferric alkaline form of both proteins. In the ferric neutral form at pH 6.0, heme is six-coordinated with water as the sixth ligand for IsdG and is in the mixture of the five-coordinated and six-coordinated species for IsdI. In the ferrous CO-bound form, CO is strongly hydrogen bonded with a distal residue. The marker lines, ν2 and ν3, appear at frequencies that are distinct from other proteins having planar hemes. The EPR spectra for the ferric hydroxide and cyanide states might be explained by assuming the thermal mixing of the d-electron configurations, (dxy)2(dxz,dyz)3 and (dxz,dyz)4(dxy)1. The fraction for the latter becomes larger for the ferric cyanide form. In the ferric neutral state at pH 6.0, the quantum mechanical mixing of the high and intermediate spin configurations might explain the peculiar frequencies of ν2 and ν3 in the RR spectra. The heme ruffling imposed by IsdG and IsdI gives rise to unique electronic structures of heme, which are expected to modulate the first and subsequent steps of the heme oxygenation.
650    _2
$a bakteriální proteiny $x chemie $7 D001426
650    _2
$a oxid uhelnatý $x chemie $7 D002248
650    _2
$a elektronová paramagnetická rezonance $7 D004578
650    _2
$a hem $x chemie $7 D006418
650    _2
$a lidé $7 D006801
650    _2
$a vodíková vazba $7 D006860
650    _2
$a oxygenasy se smíšenou funkcí $x chemie $7 D006899
650    _2
$a oxygenasy $x chemie $7 D010105
650    _2
$a Ramanova spektroskopie $7 D013059
650    _2
$a stafylokokové infekce $x mikrobiologie $7 D013203
650    _2
$a Staphylococcus aureus $x chemie $7 D013211
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nambu, Shusuke $u Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
700    1_
$a Matsui, Toshitaka $u Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
700    1_
$a Fujii, Hiroshi $u Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan $u Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kitauoyanishi, Nara 630-8506, Japan
700    1_
$a Ishikawa, Haruto $u Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
700    1_
$a Mizutani, Yasuhisa $u Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
700    1_
$a Tsumoto, Kouhei $u Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
700    1_
$a Ikeda-Saito, Masao $u Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan $u BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
773    0_
$w MED00009310 $t Biochemistry $x 1520-4995 $g Roč. 59, č. 40 (2020), s. 3918-3928
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32988197 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507101620 $b ABA008
999    __
$a ok $b bmc $g 1650420 $s 1132414
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 59 $c 40 $d 3918-3928 $e 20200929 $i 1520-4995 $m Biochemistry (Easton) $n Biochemistry $x MED00009310
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...