-
Something wrong with this record ?
Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications
R. Sivkova, J. Táborská, A. Reparaz, A. de Los Santos Pereira, I. Kotelnikov, V. Proks, J. Kučka, J. Svoboda, T. Riedel, O. Pop-Georgievski
Language English Country Switzerland
Document type Comparative Study, Journal Article
Grant support
20-07313S
Czech Science Foundation
18-01163S
Czech Science Foundation
Project BIOCEV-FAR LQ1604
Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program II
MSM200501903
Czech Academy of Sciences
NLK
Free Medical Journals
from 2000
Freely Accessible Science Journals
from 2000
PubMed Central
from 2007
Europe PubMed Central
from 2007
ProQuest Central
from 2000-03-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2007-01-01
Health & Medicine (ProQuest)
from 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
from 2000
PubMed
32947982
DOI
10.3390/ijms21186800
Knihovny.cz E-resources
- MeSH
- Adsorption MeSH
- Amino Acid Motifs MeSH
- Azides chemistry MeSH
- Coated Materials, Biocompatible * MeSH
- Biomimetic Materials * MeSH
- Cell Adhesion MeSH
- Cell Division MeSH
- Endothelium, Vascular physiology MeSH
- Blood Vessel Prosthesis * MeSH
- Click Chemistry MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Immobilized Proteins MeSH
- Silicon MeSH
- Plasma MeSH
- Blood Proteins MeSH
- Humans MeSH
- Oligopeptides chemistry MeSH
- Polyethylene Terephthalates chemistry MeSH
- Polymerization * MeSH
- Surface Properties MeSH
- Guided Tissue Regeneration instrumentation MeSH
- Glass MeSH
- Materials Testing MeSH
- Thrombosis prevention & control MeSH
- Gold MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012139
- 003
- CZ-PrNML
- 005
- 20210507102714.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms21186800 $2 doi
- 035 __
- $a (PubMed)32947982
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Sivkova, Radoslava $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 245 10
- $a Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications / $c R. Sivkova, J. Táborská, A. Reparaz, A. de Los Santos Pereira, I. Kotelnikov, V. Proks, J. Kučka, J. Svoboda, T. Riedel, O. Pop-Georgievski
- 520 9_
- $a Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- 650 _2
- $a adsorpce $7 D000327
- 650 _2
- $a aminokyselinové motivy $7 D020816
- 650 _2
- $a azidy $x chemie $7 D001386
- 650 12
- $a biomimetické materiály $7 D040761
- 650 _2
- $a krevní proteiny $7 D001798
- 650 12
- $a cévní protézy $7 D001807
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a buněčné dělení $7 D002455
- 650 _2
- $a click chemie $7 D057930
- 650 12
- $a biokompatibilní potahované materiály $7 D020099
- 650 _2
- $a cévní endotel $x fyziologie $7 D004730
- 650 _2
- $a sklo $7 D005898
- 650 _2
- $a zlato $7 D006046
- 650 _2
- $a řízená tkáňová regenerace $x přístrojové vybavení $7 D048091
- 650 _2
- $a endoteliální buňky pupečníkové žíly (lidské) $7 D061307
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a imobilizované proteiny $7 D055767
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a oligopeptidy $x chemie $7 D009842
- 650 _2
- $a krevní plazma $7 D010949
- 650 _2
- $a polyethylentereftaláty $x chemie $7 D011093
- 650 12
- $a polymerizace $7 D058105
- 650 _2
- $a křemík $7 D012825
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 650 _2
- $a trombóza $x prevence a kontrola $7 D013927
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Táborská, Johanka $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Reparaz, Alain $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a de Los Santos Pereira, Andres $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Kotelnikov, Ilya $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Proks, Vladimir $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Kučka, Jan $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Svoboda, Jan $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Riedel, Tomáš $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 700 1_
- $a Pop-Georgievski, Ognen $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 21, č. 18 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32947982 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507102713 $b ABA008
- 999 __
- $a ok $b bmc $g 1650501 $s 1132518
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 21 $c 18 $e 20200916 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 20-07313S $p Czech Science Foundation
- GRA __
- $a 18-01163S $p Czech Science Foundation
- GRA __
- $a Project BIOCEV-FAR LQ1604 $p Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program II
- GRA __
- $a MSM200501903 $p Czech Academy of Sciences
- LZP __
- $a Pubmed-20210420