Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing

L. Stanke, J. Kubicek, D. Vilimek, M. Penhaker, M. Cerny, M. Augustynek, N. Slaninova, MU. Akram

. 2020 ; 20 (18) : . [pub] 20200916

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012140

Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012140
003      
CZ-PrNML
005      
20220530082742.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s20185301 $2 doi
035    __
$a (PubMed)32947977
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Stanke, Ladislav $u Czech National e-Health Center, University Hospital Olomouc, I. P. Pavlova 185/6 , 77900 Olomouc, Czech Republic
245    10
$a Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing / $c L. Stanke, J. Kubicek, D. Vilimek, M. Penhaker, M. Cerny, M. Augustynek, N. Slaninova, MU. Akram
520    9_
$a Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.
650    12
$a algoritmy $7 D000465
650    12
$a elektromyografie $7 D004576
650    _2
$a lidé $7 D006801
650    12
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a normální rozdělení $7 D016011
650    12
$a počítačová rentgenová tomografie $7 D014057
650    12
$a vlnková analýza $7 D058067
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kubicek, Jan $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
700    1_
$a Vilímek, Dominik $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic $7 xx0273268
700    1_
$a Penhaker, Marek $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
700    1_
$a Cerny, Martin $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
700    1_
$a Augustynek, Martin $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
700    1_
$a Slaninova, Nikola $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
700    1_
$a Akram, Muhammad Usman $u Department of Computer & Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
773    0_
$w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 20, č. 18 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32947977 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20220530082740 $b ABA008
999    __
$a ok $b bmc $g 1650502 $s 1132519
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 20 $c 18 $e 20200916 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...