-
Je něco špatně v tomto záznamu ?
Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing
L. Stanke, J. Kubicek, D. Vilimek, M. Penhaker, M. Cerny, M. Augustynek, N. Slaninova, MU. Akram
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
32947977
DOI
10.3390/s20185301
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- elektromyografie * MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- normální rozdělení MeSH
- počítačová rentgenová tomografie * MeSH
- vlnková analýza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012140
- 003
- CZ-PrNML
- 005
- 20220530082742.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s20185301 $2 doi
- 035 __
- $a (PubMed)32947977
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Stanke, Ladislav $u Czech National e-Health Center, University Hospital Olomouc, I. P. Pavlova 185/6 , 77900 Olomouc, Czech Republic
- 245 10
- $a Towards to Optimal Wavelet Denoising Scheme-A Novel Spatial and Volumetric Mapping of Wavelet-Based Biomedical Data Smoothing / $c L. Stanke, J. Kubicek, D. Vilimek, M. Penhaker, M. Cerny, M. Augustynek, N. Slaninova, MU. Akram
- 520 9_
- $a Wavelet transformation is one of the most frequent procedures for data denoising, smoothing, decomposition, features extraction, and further related tasks. In order to perform such tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition level and other parameters, which form the wavelet transformation outputs. Selection of such parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet settings. In this paper, we propose a versatile recommendation system for prediction of suitable wavelet selection for data smoothing. The proposed system is aimed to generate spatial response matrix for selected wavelets and the decomposition levels. Such response enables the mapping of selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using volumetric response. We provide testing on computed tomography (CT) and magnetic resonance (MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability for clinical data processing. The experimental testing is done by using evaluation parameters such is MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide the statistical analysis of the results based on Mann-Whitney test, which points out on statistically significant differences for individual Wavelets for the data corrupted with Salt and Pepper and Gaussian noise.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a elektromyografie $7 D004576
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a normální rozdělení $7 D016011
- 650 12
- $a počítačová rentgenová tomografie $7 D014057
- 650 12
- $a vlnková analýza $7 D058067
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kubicek, Jan $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
- 700 1_
- $a Vilímek, Dominik $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic $7 xx0273268
- 700 1_
- $a Penhaker, Marek $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
- 700 1_
- $a Cerny, Martin $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
- 700 1_
- $a Augustynek, Martin $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
- 700 1_
- $a Slaninova, Nikola $u Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 70800 Ostrava-Poruba, Czech Republic
- 700 1_
- $a Akram, Muhammad Usman $u Department of Computer & Software Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 20, č. 18 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32947977 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20220530082740 $b ABA008
- 999 __
- $a ok $b bmc $g 1650502 $s 1132519
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 20 $c 18 $e 20200916 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- LZP __
- $a Pubmed-20210420