• Je něco špatně v tomto záznamu ?

Dual Substrate Specificity of the Rutinosidase from Aspergillus niger and the Role of Its Substrate Tunnel

K. Brodsky, M. Kutý, H. Pelantová, J. Cvačka, M. Rebroš, M. Kotik, I. Kutá Smatanová, V. Křen, P. Bojarová

. 2020 ; 21 (16) : . [pub] 20200807

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012276

Grantová podpora
LTC20069 Ministerstvo Školství, Mládeže a Tělovýchovy
19-00091S Grantová Agentura České Republiky
APVV-16-0439 Agentúra na Podporu Výskumu a Vývoja

Rutinosidases (α-l-rhamnopyranosyl-(1-6)-β-d-glucopyranosidases, EC 3.2.1.168, CAZy GH5) are diglycosidases that cleave the glycosidic bond between the disaccharide rutinose and the respective aglycone. Similar to many retaining glycosidases, rutinosidases can also transfer the rutinosyl moiety onto acceptors with a free -OH group (so-called transglycosylation). The recombinant rutinosidase from Aspergillus niger (AnRut) is selectively produced in Pichia pastoris. It can catalyze transglycosylation reactions as an unpurified preparation directly from cultivation. This enzyme exhibits catalytic activity towards two substrates; in addition to rutinosidase activity, it also exhibits β-d-glucopyranosidase activity. As a result, new compounds are formed by β-glucosylation or rutinosylation of acceptors such as alcohols or strong inorganic nucleophiles (NaN3). Transglycosylation products with aliphatic aglycones are resistant towards cleavage by rutinosidase, therefore, their side hydrolysis does not occur, allowing higher transglycosylation yields. Fourteen compounds were synthesized by glucosylation or rutinosylation of selected acceptors. The products were isolated and structurally characterized. Interactions between the transglycosylation products and the recombinant AnRut were analyzed by molecular modeling. We revealed the role of a substrate tunnel in the structure of AnRut, which explained the unusual catalytic properties of this glycosidase and its specific transglycosylation potential. AnRut is attractive for biosynthetic applications, especially for the use of inexpensive substrates (rutin and isoquercitrin).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012276
003      
CZ-PrNML
005      
20210713150855.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms21165671 $2 doi
035    __
$a (PubMed)32784723
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Brodsky, Katerina $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic ; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, CZ 16628 Prague 6, Czech Republic
245    10
$a Dual Substrate Specificity of the Rutinosidase from Aspergillus niger and the Role of Its Substrate Tunnel / $c K. Brodsky, M. Kutý, H. Pelantová, J. Cvačka, M. Rebroš, M. Kotik, I. Kutá Smatanová, V. Křen, P. Bojarová
520    9_
$a Rutinosidases (α-l-rhamnopyranosyl-(1-6)-β-d-glucopyranosidases, EC 3.2.1.168, CAZy GH5) are diglycosidases that cleave the glycosidic bond between the disaccharide rutinose and the respective aglycone. Similar to many retaining glycosidases, rutinosidases can also transfer the rutinosyl moiety onto acceptors with a free -OH group (so-called transglycosylation). The recombinant rutinosidase from Aspergillus niger (AnRut) is selectively produced in Pichia pastoris. It can catalyze transglycosylation reactions as an unpurified preparation directly from cultivation. This enzyme exhibits catalytic activity towards two substrates; in addition to rutinosidase activity, it also exhibits β-d-glucopyranosidase activity. As a result, new compounds are formed by β-glucosylation or rutinosylation of acceptors such as alcohols or strong inorganic nucleophiles (NaN3). Transglycosylation products with aliphatic aglycones are resistant towards cleavage by rutinosidase, therefore, their side hydrolysis does not occur, allowing higher transglycosylation yields. Fourteen compounds were synthesized by glucosylation or rutinosylation of selected acceptors. The products were isolated and structurally characterized. Interactions between the transglycosylation products and the recombinant AnRut were analyzed by molecular modeling. We revealed the role of a substrate tunnel in the structure of AnRut, which explained the unusual catalytic properties of this glycosidase and its specific transglycosylation potential. AnRut is attractive for biosynthetic applications, especially for the use of inexpensive substrates (rutin and isoquercitrin).
650    _2
$a Aspergillus niger $x enzymologie $7 D001234
650    _2
$a katalytická doména $7 D020134
650    _2
$a disacharidy $x chemie $x metabolismus $7 D004187
650    _2
$a fungální proteiny $x chemie $x metabolismus $7 D005656
650    _2
$a glykosidhydrolasy $x chemie $x metabolismus $7 D006026
650    _2
$a glykosylace $7 D006031
650    _2
$a hydrolýza $7 D006868
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a rekombinantní proteiny $x metabolismus $7 D011994
650    _2
$a rutin $x chemie $x metabolismus $7 D012431
650    _2
$a substrátová specifita $7 D013379
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kutý, Michal $u Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, CZ 37333 Nové Hrady, Czech Republic ; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 37005 České Budějovice, Czech Republic
700    1_
$a Pelantová, Helena $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
700    1_
$a Cvačka, Josef $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ 16610 Prague 6, Czech Republic
700    1_
$a Rebroš, Martin $u Institute of Biotechnology, Slovak University of Technology, Radlinského 9, SK 81237 Bratislava, Slovakia
700    1_
$a Kotik, Michael $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
700    1_
$a Kutá Smatanová, Ivana $u Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, CZ 37333 Nové Hrady, Czech Republic ; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 37005 České Budějovice, Czech Republic
700    1_
$a Křen, Vladimír $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
700    1_
$a Bojarová, Pavla $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 21, č. 16 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32784723 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210713150852 $b ABA008
999    __
$a ok $b bmc $g 1650610 $s 1132655
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 21 $c 16 $e 20200807 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a LTC20069 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 19-00091S $p Grantová Agentura České Republiky
GRA    __
$a APVV-16-0439 $p Agentúra na Podporu Výskumu a Vývoja
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...