-
Je něco špatně v tomto záznamu ?
Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae
K. Jurikova, M. Gajarsky, M. Hajikazemi, J. Nosek, K. Prochazkova, K. Paeschke, L. Trantirek, L. Tomaska
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2008 do Před 1 rokem
Freely Accessible Science Journals
od 1905 do Před 1 rokem
PubMed Central
od 2005
Europe PubMed Central
od 2005 do Před 1 rokem
Open Access Digital Library
od 1905-10-01
Open Access Digital Library
od 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
od 1905
PubMed
32385108
DOI
10.1074/jbc.ra120.012914
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA metabolismus MeSH
- G-kvadruplexy MeSH
- homeostáza telomer fyziologie MeSH
- jednovláknová DNA metabolismus MeSH
- kinetika MeSH
- konformace nukleové kyseliny MeSH
- oligonukleotidy genetika MeSH
- proteiny vázající telomery metabolismus MeSH
- retardační test MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- telomerasa genetika MeSH
- telomery metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Oncology Hematology and Rheumatology University Hospital Bonn Bonn Germany
Institute of Biophysics Czech Academy of Sciences Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012384
- 003
- CZ-PrNML
- 005
- 20210507104635.0
- 007
- ta
- 008
- 210420s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1074/jbc.RA120.012914 $2 doi
- 035 __
- $a (PubMed)32385108
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jurikova, Katarina $u Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- 245 10
- $a Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae / $c K. Jurikova, M. Gajarsky, M. Hajikazemi, J. Nosek, K. Prochazkova, K. Paeschke, L. Trantirek, L. Tomaska
- 520 9_
- $a The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.
- 650 _2
- $a DNA $x metabolismus $7 D004247
- 650 _2
- $a jednovláknová DNA $x metabolismus $7 D004277
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a retardační test $7 D024202
- 650 _2
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a oligonukleotidy $x genetika $7 D009841
- 650 _2
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x metabolismus $7 D029701
- 650 _2
- $a telomerasa $x genetika $7 D019098
- 650 _2
- $a telomery $x metabolismus $7 D016615
- 650 _2
- $a homeostáza telomer $x fyziologie $7 D059505
- 650 _2
- $a proteiny vázající telomery $x metabolismus $7 D034501
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gajarsky, Martin $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Hajikazemi, Mona $u Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
- 700 1_
- $a Nosek, Jozef $u Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- 700 1_
- $a Prochazkova, Katarina $u Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- 700 1_
- $a Paeschke, Katrin $u Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
- 700 1_
- $a Trantirek, Lukas $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic. Electronic address: lukas.trantirek@ceitec.muni.cz
- 700 1_
- $a Tomaska, Lubomir $u Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia. Electronic address: lubomir.tomaska@uniba.sk
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 295, č. 27 (2020), s. 8958-8971
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32385108 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507104634 $b ABA008
- 999 __
- $a ok $b bmc $g 1650706 $s 1132763
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 295 $c 27 $d 8958-8971 $e 20200508 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20210420