• Je něco špatně v tomto záznamu ?

Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants

R. Kalendar, O. Raskina, A. Belyayev, AH. Schulman

. 2020 ; 21 (8) : . [pub] 20200422

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012689

Grantová podpora
BR05236574 Ministry of Education and Science of the Republic of Kazakhstan

Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012689
003      
CZ-PrNML
005      
20210507102538.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms21082931 $2 doi
035    __
$a (PubMed)32331257
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Kalendar, Ruslan $u Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), FI-00014 Helsinki, Finland $u RSE "National Center for Biotechnology", Korgalzhyn Highway 13/5, Nur-Sultan 010000, Kazakhstan
245    10
$a Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants / $c R. Kalendar, O. Raskina, A. Belyayev, AH. Schulman
520    9_
$a Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
650    _2
$a zvířata $7 D000818
650    _2
$a chromozomy hmyzu $7 D059006
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a genom rostlinný $7 D018745
650    _2
$a genomika $x metody $7 D023281
650    _2
$a interakce hostitele a parazita $x genetika $7 D006790
650    _2
$a můry $x genetika $7 D009036
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a fylogeneze $7 D010802
650    _2
$a rostliny $x genetika $x parazitologie $7 D010944
650    _2
$a RNA ribozomální 5S $x genetika $7 D012341
650    _2
$a rekombinace genetická $7 D011995
650    12
$a retroelementy $7 D018626
650    12
$a koncové repetice $7 D020079
655    _2
$a časopisecké články $7 D016428
700    1_
$a Raskina, Olga $u Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
700    1_
$a Belyayev, Alexander $u Laboratory of Molecular Cytogenetics and Karyology, Institute of Botany of the ASCR, Zámek 1, CZ-252 43 Průhonice, Czech Republic
700    1_
$a Schulman, Alan H $u Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland $u Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 21, č. 8 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32331257 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102538 $b ABA008
999    __
$a ok $b bmc $g 1650952 $s 1133068
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 21 $c 8 $e 20200422 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a BR05236574 $p Ministry of Education and Science of the Republic of Kazakhstan
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...