-
Je něco špatně v tomto záznamu ?
Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants
R. Kalendar, O. Raskina, A. Belyayev, AH. Schulman
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
BR05236574
Ministry of Education and Science of the Republic of Kazakhstan
NLK
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
32331257
DOI
10.3390/ijms21082931
Knihovny.cz E-zdroje
- MeSH
- chromozomy hmyzu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- genomika metody MeSH
- interakce hostitele a parazita genetika MeSH
- koncové repetice * MeSH
- konformace nukleové kyseliny MeSH
- molekulární evoluce MeSH
- můry genetika MeSH
- rekombinace genetická MeSH
- retroelementy * MeSH
- RNA ribozomální 5S genetika MeSH
- rostliny genetika parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
Department of Agricultural Sciences University of Helsinki P O Box 27 FI 00014 Helsinki Finland
Institute of Evolution University of Haifa Mount Carmel Haifa 31905 Israel
Natural Resources Institute Finland Latokartanonkaari 9 FI 00790 Helsinki Finland
RSE National Center for Biotechnology Korgalzhyn Highway 13 5 Nur Sultan 010000 Kazakhstan
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012689
- 003
- CZ-PrNML
- 005
- 20210507102538.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms21082931 $2 doi
- 035 __
- $a (PubMed)32331257
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Kalendar, Ruslan $u Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), FI-00014 Helsinki, Finland $u RSE "National Center for Biotechnology", Korgalzhyn Highway 13/5, Nur-Sultan 010000, Kazakhstan
- 245 10
- $a Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants / $c R. Kalendar, O. Raskina, A. Belyayev, AH. Schulman
- 520 9_
- $a Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a chromozomy hmyzu $7 D059006
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genom rostlinný $7 D018745
- 650 _2
- $a genomika $x metody $7 D023281
- 650 _2
- $a interakce hostitele a parazita $x genetika $7 D006790
- 650 _2
- $a můry $x genetika $7 D009036
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a rostliny $x genetika $x parazitologie $7 D010944
- 650 _2
- $a RNA ribozomální 5S $x genetika $7 D012341
- 650 _2
- $a rekombinace genetická $7 D011995
- 650 12
- $a retroelementy $7 D018626
- 650 12
- $a koncové repetice $7 D020079
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Raskina, Olga $u Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
- 700 1_
- $a Belyayev, Alexander $u Laboratory of Molecular Cytogenetics and Karyology, Institute of Botany of the ASCR, Zámek 1, CZ-252 43 Průhonice, Czech Republic
- 700 1_
- $a Schulman, Alan H $u Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland $u Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 21, č. 8 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32331257 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507102538 $b ABA008
- 999 __
- $a ok $b bmc $g 1650952 $s 1133068
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 21 $c 8 $e 20200422 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a BR05236574 $p Ministry of Education and Science of the Republic of Kazakhstan
- LZP __
- $a Pubmed-20210420