• Something wrong with this record ?

Developmental mechanisms driving complex tooth shape in reptiles

M. Landova Sulcova, O. Zahradnicek, J. Dumkova, H. Dosedelova, J. Krivanek, M. Hampl, M. Kavkova, T. Zikmund, M. Gregorovicova, D. Sedmera, J. Kaiser, AS. Tucker, M. Buchtova

. 2020 ; 249 (4) : 441-464. [pub] 20191214

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 1992 to 1 year ago
Medline Complete (EBSCOhost) from 2012-07-01 to 1 year ago
Wiley Free Content from 1996 to 1 year ago

BACKGROUND: In mammals, odontogenesis is regulated by transient signaling centers known as enamel knots (EKs), which drive the dental epithelium shaping. However, the developmental mechanisms contributing to formation of complex tooth shape in reptiles are not fully understood. Here, we aim to elucidate whether signaling organizers similar to EKs appear during reptilian odontogenesis and how enamel ridges are formed. RESULTS: Morphological structures resembling the mammalian EK were found during reptile odontogenesis. Similar to mammalian primary EKs, they exhibit the presence of apoptotic cells and no proliferating cells. Moreover, expression of mammalian EK-specific molecules (SHH, FGF4, and ST14) and GLI2-negative cells were found in reptilian EK-like areas. 3D analysis of the nucleus shape revealed distinct rearrangement of the cells associated with enamel groove formation. This process was associated with ultrastructural changes and lipid droplet accumulation in the cells directly above the forming ridge, accompanied by alteration of membranous molecule expression (Na/K-ATPase) and cytoskeletal rearrangement (F-actin). CONCLUSIONS: The final complex shape of reptilian teeth is orchestrated by a combination of changes in cell signaling, cell shape, and cell rearrangement. All these factors contribute to asymmetry in the inner enamel epithelium development, enamel deposition, ultimately leading to the formation of characteristic enamel ridges.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012735
003      
CZ-PrNML
005      
20210507102003.0
007      
ta
008      
210420s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/dvdy.138 $2 doi
035    __
$a (PubMed)31762125
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Landova Sulcova, Marie $u Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Science, Brno, Czech Republic $u Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
245    10
$a Developmental mechanisms driving complex tooth shape in reptiles / $c M. Landova Sulcova, O. Zahradnicek, J. Dumkova, H. Dosedelova, J. Krivanek, M. Hampl, M. Kavkova, T. Zikmund, M. Gregorovicova, D. Sedmera, J. Kaiser, AS. Tucker, M. Buchtova
520    9_
$a BACKGROUND: In mammals, odontogenesis is regulated by transient signaling centers known as enamel knots (EKs), which drive the dental epithelium shaping. However, the developmental mechanisms contributing to formation of complex tooth shape in reptiles are not fully understood. Here, we aim to elucidate whether signaling organizers similar to EKs appear during reptilian odontogenesis and how enamel ridges are formed. RESULTS: Morphological structures resembling the mammalian EK were found during reptile odontogenesis. Similar to mammalian primary EKs, they exhibit the presence of apoptotic cells and no proliferating cells. Moreover, expression of mammalian EK-specific molecules (SHH, FGF4, and ST14) and GLI2-negative cells were found in reptilian EK-like areas. 3D analysis of the nucleus shape revealed distinct rearrangement of the cells associated with enamel groove formation. This process was associated with ultrastructural changes and lipid droplet accumulation in the cells directly above the forming ridge, accompanied by alteration of membranous molecule expression (Na/K-ATPase) and cytoskeletal rearrangement (F-actin). CONCLUSIONS: The final complex shape of reptilian teeth is orchestrated by a combination of changes in cell signaling, cell shape, and cell rearrangement. All these factors contribute to asymmetry in the inner enamel epithelium development, enamel deposition, ultimately leading to the formation of characteristic enamel ridges.
650    _2
$a aktiny $x metabolismus $7 D000199
650    _2
$a zvířata $7 D000818
650    _2
$a zubní sklovina $x cytologie $x metabolismus $x ultrastruktura $7 D003743
650    _2
$a vývojová regulace genové exprese $x fyziologie $7 D018507
650    _2
$a lipidová tělíska $x metabolismus $7 D066292
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a odontogeneze $x fyziologie $7 D009805
650    _2
$a plazi $x anatomie a histologie $x růst a vývoj $x metabolismus $7 D012104
650    _2
$a zuby $7 D014070
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zahradnicek, Oldrich $u Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
700    1_
$a Dumkova, Jana $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Dosedelova, Hana $u Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Science, Brno, Czech Republic
700    1_
$a Krivanek, Jan $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Hampl, Marek $u Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Science, Brno, Czech Republic $u Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
700    1_
$a Kavkova, Michaela $u CEITEC-Central European Institute of Technology, University of Technology, Brno, Czech Republic
700    1_
$a Zikmund, Tomas $u CEITEC-Central European Institute of Technology, University of Technology, Brno, Czech Republic
700    1_
$a Gregorovicova, Martina $u Institute of Anatomy, Medical Faculty, Charles University, Prague, Czech Republic $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Sedmera, David $u Institute of Anatomy, Medical Faculty, Charles University, Prague, Czech Republic $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Kaiser, Jozef $u CEITEC-Central European Institute of Technology, University of Technology, Brno, Czech Republic
700    1_
$a Tucker, Abigail S $u Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic $u Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
700    1_
$a Buchtova, Marcela $u Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Science, Brno, Czech Republic $u Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
773    0_
$w MED00001367 $t Developmental dynamics : an official publication of the American Association of Anatomists $x 1097-0177 $g Roč. 249, č. 4 (2020), s. 441-464
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31762125 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102003 $b ABA008
999    __
$a ok $b bmc $g 1650987 $s 1133114
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 249 $c 4 $d 441-464 $e 20191214 $i 1097-0177 $m Developmental dynamics $n Dev Dyn $x MED00001367
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...