-
Je něco špatně v tomto záznamu ?
The Major Capsid Protein, VP1, of the Mouse Polyomavirus Stimulates the Activity of Tubulin Acetyltransferase 1 by Microtubule Stabilization
L. Horníková, K. Bruštíková, B. Ryabchenko, I. Zhernov, M. Fraiberk, Z. Mariničová, Z. Lánský, J. Forstová
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2009
PubMed
32085463
DOI
10.3390/v12020227
Knihovny.cz E-zdroje
- MeSH
- acetylace MeSH
- acetyltransferasy genetika metabolismus MeSH
- buněčné linie MeSH
- buněčný cyklus MeSH
- cytoplazma metabolismus MeSH
- fibroblasty virologie MeSH
- histondeacetylasa 6 genetika metabolismus MeSH
- interakce mikroorganismu a hostitele * MeSH
- mikrotubuly metabolismus virologie MeSH
- myši MeSH
- Polyomavirus genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- tubulin metabolismus MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.
Faculty of Mathematics and Physics Charles University 12844 Prague Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV 25250 Vestec Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012859
- 003
- CZ-PrNML
- 005
- 20240704122201.0
- 007
- ta
- 008
- 210420s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/v12020227 $2 doi
- 035 __
- $a (PubMed)32085463
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Horníková, Lenka $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
- 245 14
- $a The Major Capsid Protein, VP1, of the Mouse Polyomavirus Stimulates the Activity of Tubulin Acetyltransferase 1 by Microtubule Stabilization / $c L. Horníková, K. Bruštíková, B. Ryabchenko, I. Zhernov, M. Fraiberk, Z. Mariničová, Z. Lánský, J. Forstová
- 520 9_
- $a Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.
- 650 _2
- $a acetylace $7 D000107
- 650 _2
- $a acetyltransferasy $x genetika $x metabolismus $7 D000123
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a virové plášťové proteiny $x genetika $x metabolismus $7 D036022
- 650 _2
- $a buněčný cyklus $7 D002453
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a cytoplazma $x metabolismus $7 D003593
- 650 _2
- $a fibroblasty $x virologie $7 D005347
- 650 _2
- $a histondeacetylasa 6 $x genetika $x metabolismus $7 D000073864
- 650 12
- $a interakce mikroorganismu a hostitele $7 D000076662
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mikrotubuly $x metabolismus $x virologie $7 D008870
- 650 _2
- $a Polyomavirus $x genetika $x metabolismus $7 D011120
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a tubulin $x metabolismus $7 D014404
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bruštíková, Kateřina $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
- 700 1_
- $a Ryabchenko, Boris $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
- 700 1_
- $a Zhernov, Ilia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic $u Faculty of Mathematics and Physics, Charles University, 12844 Prague, Czech Republic
- 700 1_
- $a Fraiberk, Martin $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic $7 jn20001227240
- 700 1_
- $a Mariničová, Zuzana $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
- 700 1_
- $a Lánský, Zdeněk $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
- 700 1_
- $a Forstová, Jitka $u Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
- 773 0_
- $w MED00177099 $t Viruses $x 1999-4915 $g Roč. 12, č. 2 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32085463 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20240704122155 $b ABA008
- 999 __
- $a ok $b bmc $g 1651103 $s 1133238
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 12 $c 2 $e 20200218 $i 1999-4915 $m Viruses $n Viruses $x MED00177099
- LZP __
- $a Pubmed-20210420