Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods

S. Salajkova, F. Havel, M. Sramek, F. Novotny, D. Malinak, R. Dolezal, L. Prchal, M. Benkova, O. Soukup, K. Musilek, K. Kuca, J. Bartek, J. Proska, M. Zarska, Z. Hodny

. 2021 ; 16 (-) : 3407-3427. [pub] 20210518

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21018595

Purpose: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). Methods: Step-by-step research approach starting with the preparation of compounds characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying the reshaping of GNRs was applied to determine the effect of ligand structure on the heat transport from GNRs under fs-laser irradiation. Results: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in the water. The colloidal stability of prepared GNRs in the cell culture medium decreased with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells increased with the length of OEG chain while the structure of the QAS group showed a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of femtosecond laser irradiation than the alkanethiol MTAB. Conclusion: OEG+GNRs appear to be optimal for clinical applications with systemic administration of NPs not-requiring irradiation at high laser intensity such as drug delivery and photothermal therapy inducing apoptosis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21018595
003      
CZ-PrNML
005      
20250506111340.0
007      
ta
008      
210728e20210518nz f 000 0|eng||
009      
AR
024    7_
$a 10.2147/IJN.S304953 $2 doi
035    __
$a (PubMed)34040371
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Salajkova, Sarka $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
245    14
$a The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods / $c S. Salajkova, F. Havel, M. Sramek, F. Novotny, D. Malinak, R. Dolezal, L. Prchal, M. Benkova, O. Soukup, K. Musilek, K. Kuca, J. Bartek, J. Proska, M. Zarska, Z. Hodny
520    9_
$a Purpose: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). Methods: Step-by-step research approach starting with the preparation of compounds characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying the reshaping of GNRs was applied to determine the effect of ligand structure on the heat transport from GNRs under fs-laser irradiation. Results: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in the water. The colloidal stability of prepared GNRs in the cell culture medium decreased with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells increased with the length of OEG chain while the structure of the QAS group showed a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of femtosecond laser irradiation than the alkanethiol MTAB. Conclusion: OEG+GNRs appear to be optimal for clinical applications with systemic administration of NPs not-requiring irradiation at high laser intensity such as drug delivery and photothermal therapy inducing apoptosis.
650    _2
$a biologický transport $7 D001692
650    _2
$a koloidy $7 D003102
650    _2
$a stabilita léku $7 D004355
650    _2
$a zlato $x chemie $x metabolismus $7 D006046
650    _2
$a HeLa buňky $7 D006367
650    _2
$a lidé $7 D006801
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a ligandy $7 D008024
650    _2
$a nanotrubičky $x chemie $7 D043942
650    _2
$a polyethylenglykoly $x chemie $7 D011092
650    _2
$a kvartérní amoniové sloučeniny $x chemie $7 D000644
650    12
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
700    1_
$a Havel, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Sramek, Michal $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Novotny, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic $u Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
700    1_
$a Malinak, David $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Dolezal, Rafael $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Prchal, Lukas $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Benkova, Marketa $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Soukup, Ondrej $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Musilek, Kamil $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Kuca, Kamil $u Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
700    1_
$a Bártek, Jiří, $d 1953- $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark $u Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology, Karolinska Institute, Stockholm, Sweden $7 xx0046271
700    1_
$a Proska, Jan $u Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Zarska, Monika $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Hodny, Zdenek $u Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
773    0_
$w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 16 (20210518), s. 3407-3427
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34040371 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20250506111339 $b ABA008
999    __
$a ok $b bmc $g 1689630 $s 1139041
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 16 $c - $d 3407-3427 $e 20210518 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...