Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport

J. Kreiter, A. Rupprecht, S. Škulj, Z. Brkljača, K. Žuna, DG. Knyazev, S. Bardakji, M. Vazdar, EE. Pohl

. 2021 ; 22 (5) : . [pub] 20210302

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019108

Grantová podpora
P31559 Austrian Science Fund
IP-2019-04-3804 Croatian Science Foundation

Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019108
003      
CZ-PrNML
005      
20210830100703.0
007      
ta
008      
210728s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms22052490 $2 doi
035    __
$a (PubMed)33801254
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Kreiter, Jürgen $u Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
245    10
$a ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport / $c J. Kreiter, A. Rupprecht, S. Škulj, Z. Brkljača, K. Žuna, DG. Knyazev, S. Bardakji, M. Vazdar, EE. Pohl
520    9_
$a Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.
650    _2
$a translokátor adeninových nukleotidů 1 $x chemie $x metabolismus $7 D033741
650    _2
$a zvířata $7 D000818
650    _2
$a mastné kyseliny $x metabolismus $7 D005227
650    _2
$a iontový transport $7 D017136
650    _2
$a membránový potenciál mitochondrií $7 D053078
650    _2
$a myši $7 D051379
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a konformace proteinů $7 D011487
650    12
$a protony $7 D011522
655    _2
$a časopisecké články $7 D016428
700    1_
$a Rupprecht, Anne $u Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria $u Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
700    1_
$a Škulj, Sanja $u Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia
700    1_
$a Brkljača, Zlatko $u Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia
700    1_
$a Žuna, Kristina $u Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
700    1_
$a Knyazev, Denis G $u Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria
700    1_
$a Bardakji, Sarah $u Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
700    1_
$a Vazdar, Mario $u Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute,10000 Zagreb, Croatia $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
700    1_
$a Pohl, Elena E $u Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 5 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33801254 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100704 $b ABA008
999    __
$a ok $b bmc $g 1690027 $s 1139554
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 22 $c 5 $e 20210302 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a P31559 $p Austrian Science Fund
GRA    __
$a IP-2019-04-3804 $p Croatian Science Foundation
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...