Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Understanding the Biological Basis of Glioblastoma Patient-derived Spheroids

K. Turnovcova, D. Marekova, T. Sursal, M. Krupova, R. Gandhi, P. Krupa, R. Kaiser, V. Herynek, D. Netuka, P. Jendelova, M. Jhanwar-Uniyal

. 2021 ; 41 (3) : 1183-1195. [pub] -

Jazyk angličtina Země Řecko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019115

BACKGROUND/AIM: Resistance to glioblastoma (GB) therapy is attributed to the presence of glioblastoma stem cells (GSC). Here, we defined the behavior of GSC as it pertains to proliferation, migration, and angiogenesis. MATERIALS AND METHODS: Human-derived GSC were isolated and cultured from GB patient tumors. Xenograft GSC were extracted from the xenograft tumors, and spheroids were created and compared with human GSC spheroids by flow cytometry, migration, proliferation, and angiogenesis assays. Oct3/4 and Sox2, GFAP, and Ku80 expression was assessed by immunoanalysis. RESULTS: The xenograft model showed the formation of two different tumors with distinct characteristics. Tumors formed at 2 weeks were less aggressive with well-defined margins, whereas tumors formed in 5 months were diffuse and aggressive. Expression of Oct3/4 and Sox2 was positive in both human and xenograft GSC. Positive Ku80 expression in xenograft GSC confirmed their human origin. Human and xenograft GSC migrated vigorously in collagen and Matrigel, respectively. Xenograft GSC displayed a higher rate of migration and invasion than human GSC. CONCLUSION: Human GSC were more aggressive in growth and proliferation than xenograft GSC, while xenograft GSC had increased invasion and migration compared to human GSC. A simple in vitro spheroid system for GSC provides a superior platform for the development of precision medicine in the treatment of GB.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019115
003      
CZ-PrNML
005      
20210830100709.0
007      
ta
008      
210728s2021 gr f 000 0|eng||
009      
AR
024    7_
$a 10.21873/anticanres.14875 $2 doi
035    __
$a (PubMed)33788709
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gr
100    1_
$a Turnovcova, Karolína $u Department of Neuroregeneration Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
245    10
$a Understanding the Biological Basis of Glioblastoma Patient-derived Spheroids / $c K. Turnovcova, D. Marekova, T. Sursal, M. Krupova, R. Gandhi, P. Krupa, R. Kaiser, V. Herynek, D. Netuka, P. Jendelova, M. Jhanwar-Uniyal
520    9_
$a BACKGROUND/AIM: Resistance to glioblastoma (GB) therapy is attributed to the presence of glioblastoma stem cells (GSC). Here, we defined the behavior of GSC as it pertains to proliferation, migration, and angiogenesis. MATERIALS AND METHODS: Human-derived GSC were isolated and cultured from GB patient tumors. Xenograft GSC were extracted from the xenograft tumors, and spheroids were created and compared with human GSC spheroids by flow cytometry, migration, proliferation, and angiogenesis assays. Oct3/4 and Sox2, GFAP, and Ku80 expression was assessed by immunoanalysis. RESULTS: The xenograft model showed the formation of two different tumors with distinct characteristics. Tumors formed at 2 weeks were less aggressive with well-defined margins, whereas tumors formed in 5 months were diffuse and aggressive. Expression of Oct3/4 and Sox2 was positive in both human and xenograft GSC. Positive Ku80 expression in xenograft GSC confirmed their human origin. Human and xenograft GSC migrated vigorously in collagen and Matrigel, respectively. Xenograft GSC displayed a higher rate of migration and invasion than human GSC. CONCLUSION: Human GSC were more aggressive in growth and proliferation than xenograft GSC, while xenograft GSC had increased invasion and migration compared to human GSC. A simple in vitro spheroid system for GSC provides a superior platform for the development of precision medicine in the treatment of GB.
650    _2
$a antigen AC133 $x analýza $7 D000071916
650    _2
$a zvířata $7 D000818
650    _2
$a nádory mozku $x krevní zásobení $x patologie $7 D001932
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a pohyb buněk $7 D002465
650    _2
$a proliferace buněk $7 D049109
650    _2
$a glioblastom $x krevní zásobení $x patologie $7 D005909
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a nádorové kmenové buňky $x fyziologie $7 D014411
650    _2
$a patologická angiogeneze $x etiologie $7 D009389
650    _2
$a buněčné sféroidy $x fyziologie $7 D018874
655    _2
$a časopisecké články $7 D016428
700    1_
$a Marekova, Dana $u Department of Neuroregeneration Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic $u Second Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Sursal, Tolga $u Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, U.S.A
700    1_
$a Krupova, Marketa $u The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralové, Charles University, Hradec Kralové, Czech Republic
700    1_
$a Gandhi, Ronan $u Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, U.S.A
700    1_
$a Krupa, Petr $u Department of Neuroregeneration Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic $u Department of Neurosurgery Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
700    1_
$a Kaiser, Radek $u Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
700    1_
$a Herynek, Vit $u Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Netuka, David $u Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
700    1_
$a Jendelova, Pavla $u Department of Neuroregeneration Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic; pavla.jendelova@iem.cas.cz meena_jhanwar@nymc.edu $u Second Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Jhanwar-Uniyal, Meena $u Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, U.S.A
773    0_
$w MED00000478 $t Anticancer research $x 1791-7530 $g Roč. 41, č. 3 (2021), s. 1183-1195
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33788709 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100709 $b ABA008
999    __
$a ok $b bmc $g 1690034 $s 1139561
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 41 $c 3 $d 1183-1195 $e - $i 1791-7530 $m Anticancer research $n Anticancer Res $x MED00000478
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...