Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives

P. Chazelas, C. Steichen, F. Favreau, P. Trouillas, P. Hannaert, R. Thuillier, S. Giraud, T. Hauet, J. Guillard

. 2021 ; 22 (5) : . [pub] 20210227

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019189

Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019189
003      
CZ-PrNML
005      
20210830100747.0
007      
ta
008      
210728s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms22052366 $2 doi
035    __
$a (PubMed)33673423
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Chazelas, Pauline $u Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France $u Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, F-87000 Limoges, France
245    10
$a Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives / $c P. Chazelas, C. Steichen, F. Favreau, P. Trouillas, P. Hannaert, R. Thuillier, S. Giraud, T. Hauet, J. Guillard
520    9_
$a Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčné linie $7 D002460
650    12
$a modely nemocí na zvířatech $7 D004195
650    _2
$a lidé $7 D006801
650    _2
$a molekulární modely $7 D008958
650    12
$a oxidační stres $7 D018384
650    _2
$a reaktivní formy kyslíku $7 D017382
650    _2
$a reperfuzní poškození $x metabolismus $7 D015427
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Steichen, Clara $u INSERM U1082, IRTOMIT, F-86000 Poitiers, France $u Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
700    1_
$a Favreau, Frédéric $u Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France $u Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, F-87000 Limoges, France
700    1_
$a Trouillas, Patrick $u INSERM U1248, IPPRITT, Université de Limoges, F-87000 Limoges, France $u RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
700    1_
$a Hannaert, Patrick $u INSERM U1082, IRTOMIT, F-86000 Poitiers, France
700    1_
$a Thuillier, Raphaël $u INSERM U1082, IRTOMIT, F-86000 Poitiers, France $u Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France $u Service de Biochimie, CHU de Poitiers, F-86000 Poitiers, France
700    1_
$a Giraud, Sébastien $u INSERM U1082, IRTOMIT, F-86000 Poitiers, France $u Service de Biochimie, CHU de Poitiers, F-86000 Poitiers, France
700    1_
$a Hauet, Thierry $u INSERM U1082, IRTOMIT, F-86000 Poitiers, France $u Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France $u Service de Biochimie, CHU de Poitiers, F-86000 Poitiers, France $u FHU SUPORT Survival Optimization in Organ Transplantation, F-86000 Poitiers, France
700    1_
$a Guillard, Jérôme $u UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, F-86000 Poitiers, France
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 5 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33673423 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100747 $b ABA008
999    __
$a ok $b bmc $g 1690096 $s 1139635
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 22 $c 5 $e 20210227 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...