Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody

L. Uhrik, L. Hernychova, P. Muller, U. Kalathiya, MM. Lisowska, M. Kocikowski, M. Parys, J. Faktor, M. Nekulova, C. Nortcliffe, P. Zatloukalova, B. Ruetgen, R. Fahraeus, KL. Ball, DJ. Argyle, B. Vojtesek, TR. Hupp

. 2021 ; 478 (1) : 99-120. [pub] 20210115

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019432

Grantová podpora
BB/J00751X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
IAA, TEC3706 Biotechnology and Biological Sciences Research Council - United Kingdom
IAA PIII-024 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R012385/1 Biotechnology and Biological Sciences Research Council - United Kingdom

A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019432
003      
CZ-PrNML
005      
20210830101005.0
007      
ta
008      
210728s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1042/BCJ20200674 $2 doi
035    __
$a (PubMed)33284343
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Uhrik, Lukas $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
245    10
$a Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody / $c L. Uhrik, L. Hernychova, P. Muller, U. Kalathiya, MM. Lisowska, M. Kocikowski, M. Parys, J. Faktor, M. Nekulova, C. Nortcliffe, P. Zatloukalova, B. Ruetgen, R. Fahraeus, KL. Ball, DJ. Argyle, B. Vojtesek, TR. Hupp
520    9_
$a A comparative canine-human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine-canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine-murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human-murine chimeric anti-CD20 antibody Rituximab.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a zvířata $7 D000818
650    _2
$a monoklonální protilátky $x chemie $x genetika $7 D000911
650    _2
$a antigeny CD20 $x imunologie $7 D018951
650    _2
$a vazebná místa protilátek $7 D001666
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a chromatografie kapalinová $7 D002853
650    _2
$a psi $7 D004285
650    _2
$a lidé $7 D006801
650    12
$a vodík/deuteriová výměna a hmotnostní spektrometrie $7 D000080307
650    _2
$a imunoglobulin G $x chemie $7 D007074
650    _2
$a těžké řetězce imunoglobulinů $x genetika $x metabolismus $7 D007143
650    _2
$a lehké řetězce imunoglobulinů $x genetika $x metabolismus $7 D007147
650    _2
$a kinetika $7 D007700
650    _2
$a peptidová knihovna $7 D019151
650    _2
$a rekombinantní fúzní proteiny $7 D011993
650    _2
$a tandemová hmotnostní spektrometrie $7 D053719
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hernychova, Lenka $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Muller, Petr $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Kalathiya, Umesh $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland
700    1_
$a Lisowska, Malgorzata M $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland
700    1_
$a Kocikowski, Mikolaj $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland $u Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, U.K
700    1_
$a Parys, Maciej $u Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, U.K
700    1_
$a Faktor, Jakub $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland
700    1_
$a Nekulova, Marta $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Nortcliffe, Chris $u Sciex, Phoenix House Lakeside Drive Centre Park WA1 1RX, Warrington, U.K
700    1_
$a Zatloukalova, Pavlina $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Ruetgen, Barbara $u Clinical Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
700    1_
$a Fahraeus, Robin $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland $u Institut de Génétique Moléculaire, INSERM Unité 940, Université Paris VII, Hôpital St Louis, Paris, France
700    1_
$a Ball, Kathryn L $u Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, U.K
700    1_
$a Argyle, David J $u Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, U.K
700    1_
$a Vojtesek, Borivoj $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Hupp, Ted R $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24 80-822 Gdańsk, Poland $u Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, U.K
773    0_
$w MED00009308 $t The Biochemical journal $x 1470-8728 $g Roč. 478, č. 1 (2021), s. 99-120
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33284343 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101005 $b ABA008
999    __
$a ok $b bmc $g 1690286 $s 1139878
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 478 $c 1 $d 99-120 $e 20210115 $i 1470-8728 $m Biochemical journal (London. 1984) $n Biochem J $x MED00009308
GRA    __
$a BB/J00751X/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a IAA, TEC3706 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a IAA PIII-024 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a BB/R012385/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...