• Something wrong with this record ?

BIAS: Transparent reporting of biomedical image analysis challenges

L. Maier-Hein, A. Reinke, M. Kozubek, AL. Martel, T. Arbel, M. Eisenmann, A. Hanbury, P. Jannin, H. Müller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider, BA. Landman

. 2020 ; 66 (-) : 101796. [pub] 20200821

Language English Country Netherlands

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 EB017230 NIBIB NIH HHS - United States

The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.

Centre for Biomedical Image Analysis Masaryk University Botanická 68a Brno 60200 Czech Republic

Centre for Intelligent Machines McGill University 3480 University Street McConnell Engineering Building Room 425 Montreal QC H3A 0E9 Canada

Complexity Science Hub Vienna Josefstädter Straße 39 Vienna 1080 Austria

Department Medical Biophysics University of Toronto 101 College St Suite 15 701 Toronto ON M5G 1L7 Canada

Department of Radiology and Nuclear Medicine Medical Image Analysis Radboud University Center Nijmegen 6525 GA The Netherlands

Division of Biostatistics German Cancer Research Center Im Neuenheimer Feld 581 Heidelberg 69120 Germany

Division of Computer Assisted Medical Interventions Im Neuenheimer Feld 223 Heidelberg 69120 Germany

Electrical Engineering Vanderbilt University Nashville Tennessee TN 37235 1679 USA

Heidelberg University Hospital Im Neuenheimer Feld 267 Heidelberg 69120 Germany

Institute of Computational Biomedicine Heidelberg University Faculty of Medicine Im Neuenheimer Feld 267 Heidelberg 69120 Germany

Institute of Information Systems Engineering Technische Universität Wien Favoritenstraße 9 11 194 04 Vienna 1040 Austria

Joint Research Centre for Computational Biomedicine Rheinisch Westfälische Technische Hochschule Aachen Faculty of Medicine Aachen 52074 Germany

Laboratoire Traitement du Signal et de l'Image UMR_S 1099 Université de Rennes 1 Inserm Rennes Cedex 35043 France

Medical Faculty University of Geneva Rue Gabrielle Perret Gentil 4 Geneva 1211 Switzerland

Physical Sciences Sunnybrook Research Institute 2075 Bayview Avenue Rm M6 609 Toronto ON M4N 3M5 Canada

University of Applied Sciences Western Switzerland Rue du Technopole 3 Sierre 3960 Switzerland

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019757
003      
CZ-PrNML
005      
20210830101345.0
007      
ta
008      
210728s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.media.2020.101796 $2 doi
035    __
$a (PubMed)32911207
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Maier-Hein, Lena $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany. Electronic address: l.maier-hein@dkfz-heidelberg.de
245    10
$a BIAS: Transparent reporting of biomedical image analysis challenges / $c L. Maier-Hein, A. Reinke, M. Kozubek, AL. Martel, T. Arbel, M. Eisenmann, A. Hanbury, P. Jannin, H. Müller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider, BA. Landman
520    9_
$a The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
650    12
$a biomedicínský výzkum $7 D035843
650    12
$a kontrolní seznam $7 D057189
650    _2
$a lidé $7 D006801
650    _2
$a prognóza $7 D011379
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Reinke, Annika $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
700    1_
$a Kozubek, Michal $u Centre for Biomedical Image Analysis, Masaryk University, Botanická 68a, Brno 60200, Czech Republic
700    1_
$a Martel, Anne L $u Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Rm M6-609, Toronto ON M4N 3M5, Canada; Department Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
700    1_
$a Arbel, Tal $u Centre for Intelligent Machines, McGill University, 3480 University Street, McConnell Engineering Building, Room 425, Montreal QC H3A 0E9, Canada
700    1_
$a Eisenmann, Matthias $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
700    1_
$a Hanbury, Allan $u Institute of Information Systems Engineering, Technische Universität (TU) Wien, Favoritenstraße 9-11/194-04, Vienna 1040, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, Vienna 1080, Austria
700    1_
$a Jannin, Pierre $u Laboratoire Traitement du Signal et de l'Image (LTSI) - UMR_S 1099, Université de Rennes 1, Inserm, Rennes, Cedex 35043, France
700    1_
$a Müller, Henning $u University of Applied Sciences Western Switzerland (HES-SO), Rue du Technopole 3, Sierre 3960, Switzerland; Medical Faculty, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1211, Switzerland
700    1_
$a Onogur, Sinan $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
700    1_
$a Saez-Rodriguez, Julio $u Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Joint Research Centre for Computational Biomedicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Faculty of Medicine, Aachen 52074, Germany
700    1_
$a van Ginneken, Bram $u Department of Radiology and Nuclear Medicine, Medical Image Analysis, Radboud University Center, Nijmegen 6525 GA, The Netherlands
700    1_
$a Kopp-Schneider, Annette $u Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
700    1_
$a Landman, Bennett A $u Electrical Engineering, Vanderbilt University, Nashville, Tennessee TN 37235-1679, USA
773    0_
$w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 66, č. - (2020), s. 101796
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32911207 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101345 $b ABA008
999    __
$a ok $b bmc $g 1690547 $s 1140203
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 66 $c - $d 101796 $e 20200821 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
GRA    __
$a R01 EB017230 $p NIBIB NIH HHS $2 United States
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...