-
Something wrong with this record ?
BIAS: Transparent reporting of biomedical image analysis challenges
L. Maier-Hein, A. Reinke, M. Kozubek, AL. Martel, T. Arbel, M. Eisenmann, A. Hanbury, P. Jannin, H. Müller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider, BA. Landman
Language English Country Netherlands
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 EB017230
NIBIB NIH HHS - United States
- MeSH
- Biomedical Research * MeSH
- Checklist * MeSH
- Humans MeSH
- Prognosis MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
Centre for Biomedical Image Analysis Masaryk University Botanická 68a Brno 60200 Czech Republic
Complexity Science Hub Vienna Josefstädter Straße 39 Vienna 1080 Austria
Division of Computer Assisted Medical Interventions Im Neuenheimer Feld 223 Heidelberg 69120 Germany
Electrical Engineering Vanderbilt University Nashville Tennessee TN 37235 1679 USA
Heidelberg University Hospital Im Neuenheimer Feld 267 Heidelberg 69120 Germany
Medical Faculty University of Geneva Rue Gabrielle Perret Gentil 4 Geneva 1211 Switzerland
University of Applied Sciences Western Switzerland Rue du Technopole 3 Sierre 3960 Switzerland
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21019757
- 003
- CZ-PrNML
- 005
- 20210830101345.0
- 007
- ta
- 008
- 210728s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.media.2020.101796 $2 doi
- 035 __
- $a (PubMed)32911207
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Maier-Hein, Lena $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany. Electronic address: l.maier-hein@dkfz-heidelberg.de
- 245 10
- $a BIAS: Transparent reporting of biomedical image analysis challenges / $c L. Maier-Hein, A. Reinke, M. Kozubek, AL. Martel, T. Arbel, M. Eisenmann, A. Hanbury, P. Jannin, H. Müller, S. Onogur, J. Saez-Rodriguez, B. van Ginneken, A. Kopp-Schneider, BA. Landman
- 520 9_
- $a The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
- 650 12
- $a biomedicínský výzkum $7 D035843
- 650 12
- $a kontrolní seznam $7 D057189
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Reinke, Annika $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
- 700 1_
- $a Kozubek, Michal $u Centre for Biomedical Image Analysis, Masaryk University, Botanická 68a, Brno 60200, Czech Republic
- 700 1_
- $a Martel, Anne L $u Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Rm M6-609, Toronto ON M4N 3M5, Canada; Department Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
- 700 1_
- $a Arbel, Tal $u Centre for Intelligent Machines, McGill University, 3480 University Street, McConnell Engineering Building, Room 425, Montreal QC H3A 0E9, Canada
- 700 1_
- $a Eisenmann, Matthias $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
- 700 1_
- $a Hanbury, Allan $u Institute of Information Systems Engineering, Technische Universität (TU) Wien, Favoritenstraße 9-11/194-04, Vienna 1040, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, Vienna 1080, Austria
- 700 1_
- $a Jannin, Pierre $u Laboratoire Traitement du Signal et de l'Image (LTSI) - UMR_S 1099, Université de Rennes 1, Inserm, Rennes, Cedex 35043, France
- 700 1_
- $a Müller, Henning $u University of Applied Sciences Western Switzerland (HES-SO), Rue du Technopole 3, Sierre 3960, Switzerland; Medical Faculty, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1211, Switzerland
- 700 1_
- $a Onogur, Sinan $u Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
- 700 1_
- $a Saez-Rodriguez, Julio $u Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Joint Research Centre for Computational Biomedicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Faculty of Medicine, Aachen 52074, Germany
- 700 1_
- $a van Ginneken, Bram $u Department of Radiology and Nuclear Medicine, Medical Image Analysis, Radboud University Center, Nijmegen 6525 GA, The Netherlands
- 700 1_
- $a Kopp-Schneider, Annette $u Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
- 700 1_
- $a Landman, Bennett A $u Electrical Engineering, Vanderbilt University, Nashville, Tennessee TN 37235-1679, USA
- 773 0_
- $w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 66, č. - (2020), s. 101796
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32911207 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830101345 $b ABA008
- 999 __
- $a ok $b bmc $g 1690547 $s 1140203
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 66 $c - $d 101796 $e 20200821 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
- GRA __
- $a R01 EB017230 $p NIBIB NIH HHS $2 United States
- LZP __
- $a Pubmed-20210728