• Je něco špatně v tomto záznamu ?

Synthesis, inhibitory activity and in silico docking of dual COX/5-LOX inhibitors with quinone and resorcinol core

M. Sisa, M. Dvorakova, V. Temml, V. Jarosova, T. Vanek, P. Landa

. 2020 ; 204 (-) : 112620. [pub] 20200711

Jazyk angličtina Země Francie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019977

Based on the significant anti-inflammatory activity of natural quinone primin (5a), series of 1,4-benzoquinones, hydroquinones, and related resorcinols were designed, synthesized, characterized and tested for their ability to inhibit the activity of cyclooxygenase (COX-1 and COX-2) and 5-lipoxygenase (5-LOX) enzymes. Structural modifications resulted in the identification of two compounds 5b (2-methoxy-6-undecyl-1,4-benzoquinone) and 6b (2-methoxy-6-undecyl-1,4-hydroquinone) as potent dual COX/5-LOX inhibitors. The IC50 values evaluated in vitro using enzymatic assay were for compound 5b IC50 = 1.07, 0.57, and 0.34 μM and for compound 6b IC50 = 1.07, 0.55, and 0.28 μM for COX-1, COX-2, and 5-LOX enzyme, respectively. In addition, compound 6d was identified as the most potent 5-LOX inhibitor (IC50 = 0.14 μM; reference inhibitor zileuton IC50 = 0.66 μM) from the tested compounds while its inhibitory potential against COX enzymes (IC50 = 2.65 and 2.71 μM for COX-1 and COX-2, respectively) was comparable with the reference inhibitor ibuprofen (IC50 = 4.50 and 2.46 μM, respectively). The most important structural modification leading to increased inhibitory activity towards both COXs and 5-LOX was the elongation of alkyl chain in position 6 from 5 to 11 carbons. Moreover, the monoacetylation in ortho position of bromo-hydroquinone 13 led to the discovery of potent (IC50 = 0.17 μM) 5-LOX inhibitor 17 (2-bromo-6-methoxy-1,4-benzoquinone) while bromination stabilized the hydroquinone form. Docking analysis revealed the interaction of compounds with Tyr355 and Arg120 in the catalytic site of COX enzymes, while the hydrophobic parts of the molecules filled the hydrophobic substrate channel leading up to Tyr385. In the allosteric catalytic site of 5-LOX, compounds bound to Tyr142 and formed aromatic interactions with Arg138. Taken together, we identified optimal alkyl chain length for dual COX/5-LOX inhibition and investigated other structural modifications influencing COX and 5-LOX inhibitory activity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019977
003      
CZ-PrNML
005      
20210830101556.0
007      
ta
008      
210728s2020 fr f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ejmech.2020.112620 $2 doi
035    __
$a (PubMed)32738413
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a fr
100    1_
$a Sisa, Miroslav $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02 Prague 6, Lysolaje, Czech Republic
245    10
$a Synthesis, inhibitory activity and in silico docking of dual COX/5-LOX inhibitors with quinone and resorcinol core / $c M. Sisa, M. Dvorakova, V. Temml, V. Jarosova, T. Vanek, P. Landa
520    9_
$a Based on the significant anti-inflammatory activity of natural quinone primin (5a), series of 1,4-benzoquinones, hydroquinones, and related resorcinols were designed, synthesized, characterized and tested for their ability to inhibit the activity of cyclooxygenase (COX-1 and COX-2) and 5-lipoxygenase (5-LOX) enzymes. Structural modifications resulted in the identification of two compounds 5b (2-methoxy-6-undecyl-1,4-benzoquinone) and 6b (2-methoxy-6-undecyl-1,4-hydroquinone) as potent dual COX/5-LOX inhibitors. The IC50 values evaluated in vitro using enzymatic assay were for compound 5b IC50 = 1.07, 0.57, and 0.34 μM and for compound 6b IC50 = 1.07, 0.55, and 0.28 μM for COX-1, COX-2, and 5-LOX enzyme, respectively. In addition, compound 6d was identified as the most potent 5-LOX inhibitor (IC50 = 0.14 μM; reference inhibitor zileuton IC50 = 0.66 μM) from the tested compounds while its inhibitory potential against COX enzymes (IC50 = 2.65 and 2.71 μM for COX-1 and COX-2, respectively) was comparable with the reference inhibitor ibuprofen (IC50 = 4.50 and 2.46 μM, respectively). The most important structural modification leading to increased inhibitory activity towards both COXs and 5-LOX was the elongation of alkyl chain in position 6 from 5 to 11 carbons. Moreover, the monoacetylation in ortho position of bromo-hydroquinone 13 led to the discovery of potent (IC50 = 0.17 μM) 5-LOX inhibitor 17 (2-bromo-6-methoxy-1,4-benzoquinone) while bromination stabilized the hydroquinone form. Docking analysis revealed the interaction of compounds with Tyr355 and Arg120 in the catalytic site of COX enzymes, while the hydrophobic parts of the molecules filled the hydrophobic substrate channel leading up to Tyr385. In the allosteric catalytic site of 5-LOX, compounds bound to Tyr142 and formed aromatic interactions with Arg138. Taken together, we identified optimal alkyl chain length for dual COX/5-LOX inhibition and investigated other structural modifications influencing COX and 5-LOX inhibitory activity.
650    _2
$a benzochinony $x chemie $7 D016227
650    _2
$a katalytická doména $7 D020134
650    _2
$a počítačová simulace $7 D003198
650    _2
$a inhibitory cyklooxygenasy $x chemická syntéza $x chemie $x farmakologie $7 D016861
650    _2
$a inhibitory lipoxygenas $x chemická syntéza $x chemie $x farmakologie $7 D016859
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a resorcinoly $x chemie $7 D012118
650    _2
$a spektrální analýza $x metody $7 D013057
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dvorakova, Marcela $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02 Prague 6, Lysolaje, Czech Republic
700    1_
$a Temml, Veronika $u Department of Pharmacy/Pharmacognosy and Center of Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
700    1_
$a Jarosova, Veronika $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02 Prague 6, Lysolaje, Czech Republic; Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Suchdol, Czech Republic
700    1_
$a Vanek, Tomas $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02 Prague 6, Lysolaje, Czech Republic
700    1_
$a Landa, Premysl $u Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02 Prague 6, Lysolaje, Czech Republic. Electronic address: landa@ueb.cas.cz
773    0_
$w MED00001628 $t European journal of medicinal chemistry $x 1768-3254 $g Roč. 204, č. - (2020), s. 112620
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32738413 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101556 $b ABA008
999    __
$a ok $b bmc $g 1690714 $s 1140423
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 204 $c - $d 112620 $e 20200711 $i 1768-3254 $m European journal of medicinal chemistry $n Eur J Med Chem $x MED00001628
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...