Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Skull shape reconstruction using cascaded convolutional networks

O. Kodym, M. Španěl, A. Herout

. 2020 ; 123 (-) : 103886. [pub] 20200627

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21020286

Designing a cranial implant to restore the protective and aesthetic function of the patient's skull is a challenging process that requires a substantial amount of manual work, even for an experienced clinician. While computer-assisted approaches with various levels of required user interaction exist to aid this process, they are usually only validated on either a single type of simple synthetic defect or a very limited sample of real defects. The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape reconstruction method that can address diverse shapes of real skull defects in various stages of healing and (ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set of synthetically broken skull shapes. We propose an application of the multi-scale cascade architecture of convolutional neural networks to the reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment with both generative and discriminative models and study their behavior during the task of anatomical reconstruction. The proposed method achieves an average surface error of 0.59mm for our synthetic test dataset with as low as 0.48mm for unilateral defects of parietal and temporal bone, matching state-of-the-art performance while being completely automatic. We also show that the model trained on our synthetic dataset is able to reconstruct real patient defects.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020286
003      
CZ-PrNML
005      
20210830101915.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2020.103886 $2 doi
035    __
$a (PubMed)32658793
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kodym, Oldřich $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic. Electronic address: ikodym@fit.vutbr.cz
245    10
$a Skull shape reconstruction using cascaded convolutional networks / $c O. Kodym, M. Španěl, A. Herout
520    9_
$a Designing a cranial implant to restore the protective and aesthetic function of the patient's skull is a challenging process that requires a substantial amount of manual work, even for an experienced clinician. While computer-assisted approaches with various levels of required user interaction exist to aid this process, they are usually only validated on either a single type of simple synthetic defect or a very limited sample of real defects. The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape reconstruction method that can address diverse shapes of real skull defects in various stages of healing and (ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set of synthetically broken skull shapes. We propose an application of the multi-scale cascade architecture of convolutional neural networks to the reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment with both generative and discriminative models and study their behavior during the task of anatomical reconstruction. The proposed method achieves an average surface error of 0.59mm for our synthetic test dataset with as low as 0.48mm for unilateral defects of parietal and temporal bone, matching state-of-the-art performance while being completely automatic. We also show that the model trained on our synthetic dataset is able to reconstruct real patient defects.
650    _2
$a lidé $7 D006801
650    12
$a počítačové zpracování obrazu $7 D007091
650    12
$a neuronové sítě $7 D016571
650    _2
$a protézy a implantáty $7 D019736
650    _2
$a lebka $x diagnostické zobrazování $7 D012886
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Španěl, Michal $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic
700    1_
$a Herout, Adam $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 123, č. - (2020), s. 103886
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32658793 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101915 $b ABA008
999    __
$a ok $b bmc $g 1690964 $s 1140732
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 123 $c - $d 103886 $e 20200627 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...