• Je něco špatně v tomto záznamu ?

Rutinosidase from Aspergillus niger: crystal structure and insight into the enzymatic activity

P. Pachl, J. Kapešová, J. Brynda, L. Biedermannová, H. Pelantová, P. Bojarová, V. Křen, P. Řezáčová, M. Kotik

. 2020 ; 287 (15) : 3315-3327. [pub] 20200124

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21020295
E-zdroje Online Plný text

NLK Free Medical Journals od 2005 do Před 1 rokem
Medline Complete (EBSCOhost) od 2005-01-01 do Před 1 rokem
Wiley Free Content od 2005 do Před 1 rokem

Rutinosidases (α-l-rhamnosyl-β-d-glucosidases) catalyze the cleavage of the glycosidic bond between the aglycone and the disaccharide rutinose (α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranose) of specific flavonoid glycosides such as rutin (quercetin 3-O-rutinoside). Microbial rutinosidases are part of the rutin catabolic pathway, enabling the microorganism to utilize rutin and related plant phenolic glycosides. Here, we report the first three-dimensional structure of a rutinosidase determined at 1.27-Å resolution. The rutinosidase from Aspergillus niger K2 (AnRut), a member of glycoside hydrolase family GH-5, subfamily 23, was heterologously produced in Pichia pastoris. The X-ray structure of AnRut is represented by a distorted (β/α)8 barrel fold with its closest structural homologue being an exo-β-(1,3)-glucanase from Candida albicans (CaExg). The catalytic site is located in a deep pocket with a striking structural similarity to CaExg. However, the entrance to the active site of AnRut has been found to be different from that of CaExg - a mostly unstructured section of ~ 40 residues present in CaExg is missing in AnRut, whereas an additional loop of 13 amino acids partially covers the active site of AnRut. NMR analysis of reaction products provided clear evidence for a retaining reaction mechanism of AnRut. Unexpectedly, quercetin 3-O-glucoside was found to be a better substrate than rutin, and thus, AnRut cannot be considered a typical diglycosidase. Mutational analysis of conserved active site residues in combination with in silico modeling allowed identification of essential interactions for enzyme activity and helped to reveal further details of substrate binding. The protein sequence of AnRut has been revised. DATABASES: The nucleotide sequence of the rutinosidase-encoding gene is available in the GenBank database under the accession number MN393234. Structural data are available in the PDB database under the accession number 6I1A. ENZYME: α-l-Rhamnosyl-β-d-glucosidase (EC 3.2.1.168).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020295
003      
CZ-PrNML
005      
20210830101925.0
007      
ta
008      
210728s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/febs.15208 $2 doi
035    __
$a (PubMed)31943739
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Pachl, Petr $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
245    10
$a Rutinosidase from Aspergillus niger: crystal structure and insight into the enzymatic activity / $c P. Pachl, J. Kapešová, J. Brynda, L. Biedermannová, H. Pelantová, P. Bojarová, V. Křen, P. Řezáčová, M. Kotik
520    9_
$a Rutinosidases (α-l-rhamnosyl-β-d-glucosidases) catalyze the cleavage of the glycosidic bond between the aglycone and the disaccharide rutinose (α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranose) of specific flavonoid glycosides such as rutin (quercetin 3-O-rutinoside). Microbial rutinosidases are part of the rutin catabolic pathway, enabling the microorganism to utilize rutin and related plant phenolic glycosides. Here, we report the first three-dimensional structure of a rutinosidase determined at 1.27-Å resolution. The rutinosidase from Aspergillus niger K2 (AnRut), a member of glycoside hydrolase family GH-5, subfamily 23, was heterologously produced in Pichia pastoris. The X-ray structure of AnRut is represented by a distorted (β/α)8 barrel fold with its closest structural homologue being an exo-β-(1,3)-glucanase from Candida albicans (CaExg). The catalytic site is located in a deep pocket with a striking structural similarity to CaExg. However, the entrance to the active site of AnRut has been found to be different from that of CaExg - a mostly unstructured section of ~ 40 residues present in CaExg is missing in AnRut, whereas an additional loop of 13 amino acids partially covers the active site of AnRut. NMR analysis of reaction products provided clear evidence for a retaining reaction mechanism of AnRut. Unexpectedly, quercetin 3-O-glucoside was found to be a better substrate than rutin, and thus, AnRut cannot be considered a typical diglycosidase. Mutational analysis of conserved active site residues in combination with in silico modeling allowed identification of essential interactions for enzyme activity and helped to reveal further details of substrate binding. The protein sequence of AnRut has been revised. DATABASES: The nucleotide sequence of the rutinosidase-encoding gene is available in the GenBank database under the accession number MN393234. Structural data are available in the PDB database under the accession number 6I1A. ENZYME: α-l-Rhamnosyl-β-d-glucosidase (EC 3.2.1.168).
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a Aspergillus niger $x enzymologie $7 D001234
650    _2
$a katalytická doména $7 D020134
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a fungální proteiny $x chemie $x genetika $x metabolismus $7 D005656
650    _2
$a glykosidhydrolasy $x chemie $x genetika $x metabolismus $7 D006026
650    _2
$a molekulární modely $7 D008958
650    _2
$a mutace $7 D009154
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a konformace proteinů $7 D011487
650    _2
$a rutin $x chemie $x metabolismus $7 D012431
650    _2
$a sekvenční homologie $7 D017385
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kapešová, Jana $u Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Brynda, Jiří $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $u Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Biedermannová, Lada $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
700    1_
$a Pelantová, Helena $u Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Bojarová, Pavla $u Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Křen, Vladimír $u Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Řezáčová, Pavlína $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic $u Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Kotik, Michael $u Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
773    0_
$w MED00008414 $t The FEBS journal $x 1742-4658 $g Roč. 287, č. 15 (2020), s. 3315-3327
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31943739 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830101925 $b ABA008
999    __
$a ok $b bmc $g 1690973 $s 1140741
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 287 $c 15 $d 3315-3327 $e 20200124 $i 1742-4658 $m The FEBS journal $n FEBS J $x MED00008414
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...