• Je něco špatně v tomto záznamu ?

Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry

E. Jäger, V. Sincari, LJC. Albuquerque, A. Jäger, J. Humajova, J. Kucka, J. Pankrac, P. Paral, T. Heizer, O. Janouskova, R. Konefał, E. Pavlova, O. Sedlacek, FC. Giacomelli, P. Pouckova, L. Sefc, P. Stepanek, M. Hruby

. 2020 ; 21 (4) : 1437-1449. [pub] 20200304

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21020638

The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020638
003      
CZ-PrNML
005      
20210830102246.0
007      
ta
008      
210728s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biomac.9b01748 $2 doi
035    __
$a (PubMed)32083473
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Jäger, Eliézer $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
245    10
$a Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry / $c E. Jäger, V. Sincari, LJC. Albuquerque, A. Jäger, J. Humajova, J. Kucka, J. Pankrac, P. Paral, T. Heizer, O. Janouskova, R. Konefał, E. Pavlova, O. Sedlacek, FC. Giacomelli, P. Pouckova, L. Sefc, P. Stepanek, M. Hruby
520    9_
$a The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
650    _2
$a zvířata $7 D000818
650    _2
$a nádorové buněčné linie $7 D045744
650    12
$a doxorubicin $7 D004317
650    _2
$a nosiče léků $7 D004337
650    _2
$a myši $7 D051379
650    _2
$a micely $7 D008823
650    12
$a nádory $x farmakoterapie $7 D009369
650    _2
$a reaktivní formy kyslíku $7 D017382
650    _2
$a nádorové mikroprostředí $7 D059016
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sincari, Vladimir $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Albuquerque, Lindomar J C $u Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
700    1_
$a Jäger, Alessandro $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Humajova, Jana $u Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
700    1_
$a Kucka, Jan $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Pankrac, Jan $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
700    1_
$a Paral, Petr $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
700    1_
$a Heizer, Tomas $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
700    1_
$a Janouskova, Olga $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Konefał, Rafał $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Pavlova, Ewa $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Sedlacek, Ondrej $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Giacomelli, Fernando C $u Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
700    1_
$a Pouckova, Pavla $u Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
700    1_
$a Sefc, Ludek $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
700    1_
$a Stepanek, Petr $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
700    1_
$a Hruby, Martin $u Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
773    0_
$w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 21, č. 4 (2020), s. 1437-1449
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32083473 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830102246 $b ABA008
999    __
$a ok $b bmc $g 1691250 $s 1141084
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 21 $c 4 $d 1437-1449 $e 20200304 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...