-
Something wrong with this record ?
HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours
L. Kostka, L. Kotrchová, V. Šubr, A. Libánská, CA. Ferreira, I. Malátová, HJ. Lee, TE. Barnhart, JW. Engle, W. Cai, M. Šírová, T. Etrych
Language English Country Netherlands
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P30 CA014520
NCI NIH HHS - United States
NV16-28600A
MZ0
CEP Register
- MeSH
- Acrylamides MeSH
- Biocompatible Materials * MeSH
- Doxorubicin MeSH
- Pharmaceutical Preparations * MeSH
- Drug Delivery Systems MeSH
- Methacrylates MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Drug Carriers MeSH
- Polymers MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Design, controlled synthesis, physico-chemical and biological characteristics of novel well-defined biodegradable star-shaped copolymers intended for advanced drug delivery is described. These new biocompatible star copolymers were synthesised by grafting monodispersed semitelechelic linear (sL) N-(2-hydroxypropyl)methacrylamide copolymers onto a 2,2-bis(hydroxymethyl)propionic acid (bisMPA)-based polyester dendritic core of various structures. The hydrodynamic diameter of the star copolymer biomaterials can be tuned from 13 to 31 nm and could be adjusted to a given purpose by proper selection of the bisMPA dendritic core type and generation and by considering the sL copolymer molecular weight and polymer-to-core molar ratio. The hydrolytic degradation was proved for both the star copolymers containing either dendron or dendrimer core, showing the spontaneous hydrolysis in duration of few weeks. Finally, it was shown that the therapy with the biodegradable star conjugate with attached doxorubicin strongly suppresses the tumour growth in mice and is fully curative in most of the treated animals at dose corresponding approximately to one fourth of maximum tolerated dose (MTD) value. Both new biodegradable systems show superior efficacy and tumour accumulation over the first generation of star copolymers containing non-degradable PAMAM core.
Department of Biomedical Engineering University of Wisconsin Madison Madison WI United States
Department of Pharmaceutical Sciences University of Wisconsin Madison Madison WI United States
University of Wisconsin Carbone Cancer Center Madison WI United States
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020698
- 003
- CZ-PrNML
- 005
- 20210830102324.0
- 007
- ta
- 008
- 210728s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biomaterials.2019.119728 $2 doi
- 035 __
- $a (PubMed)32044514
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Kostka, Libor $u Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
- 245 10
- $a HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours / $c L. Kostka, L. Kotrchová, V. Šubr, A. Libánská, CA. Ferreira, I. Malátová, HJ. Lee, TE. Barnhart, JW. Engle, W. Cai, M. Šírová, T. Etrych
- 520 9_
- $a Design, controlled synthesis, physico-chemical and biological characteristics of novel well-defined biodegradable star-shaped copolymers intended for advanced drug delivery is described. These new biocompatible star copolymers were synthesised by grafting monodispersed semitelechelic linear (sL) N-(2-hydroxypropyl)methacrylamide copolymers onto a 2,2-bis(hydroxymethyl)propionic acid (bisMPA)-based polyester dendritic core of various structures. The hydrodynamic diameter of the star copolymer biomaterials can be tuned from 13 to 31 nm and could be adjusted to a given purpose by proper selection of the bisMPA dendritic core type and generation and by considering the sL copolymer molecular weight and polymer-to-core molar ratio. The hydrolytic degradation was proved for both the star copolymers containing either dendron or dendrimer core, showing the spontaneous hydrolysis in duration of few weeks. Finally, it was shown that the therapy with the biodegradable star conjugate with attached doxorubicin strongly suppresses the tumour growth in mice and is fully curative in most of the treated animals at dose corresponding approximately to one fourth of maximum tolerated dose (MTD) value. Both new biodegradable systems show superior efficacy and tumour accumulation over the first generation of star copolymers containing non-degradable PAMAM core.
- 650 _2
- $a akrylamidy $7 D000178
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a biokompatibilní materiály $7 D001672
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a doxorubicin $7 D004317
- 650 _2
- $a nosiče léků $7 D004337
- 650 _2
- $a lékové transportní systémy $7 D016503
- 650 _2
- $a methakryláty $7 D008689
- 650 _2
- $a myši $7 D051379
- 650 12
- $a léčivé přípravky $7 D004364
- 650 _2
- $a polymery $7 D011108
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kotrchová, Lenka $u Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Šubr, Vladimír $u Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Libánská, Alena $u Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Ferreira, Carolina A $u Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- 700 1_
- $a Malátová, Iva $u Institute of Microbiology CAS, Laboratory of Tumour Immunology, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Lee, Hye Jin $u Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States
- 700 1_
- $a Barnhart, Todd E $u Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- 700 1_
- $a Engle, Jonathan W $u Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- 700 1_
- $a Cai, Weibo $u Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States; Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; University of Wisconsin, Carbone Cancer Center, Madison, WI, United States
- 700 1_
- $a Šírová, Milada $u Institute of Microbiology CAS, Laboratory of Tumour Immunology, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Etrych, Tomáš $u Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského Nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: etrych@imc.cas.cz
- 773 0_
- $w MED00000753 $t Biomaterials $x 1878-5905 $g Roč. 235, č. - (2020), s. 119728
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32044514 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830102324 $b ABA008
- 999 __
- $a ok $b bmc $g 1691303 $s 1141144
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 235 $c - $d 119728 $e 20191226 $i 1878-5905 $m Biomaterials $n Biomaterials $x MED00000753
- GRA __
- $a P30 CA014520 $p NCI NIH HHS $2 United States
- GRA __
- $a NV16-28600A $p MZ0
- LZP __
- $a Pubmed-20210728