Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Simplicial and topological descriptions of human brain dynamics

J. Billings, M. Saggar, J. Hlinka, S. Keilholz, G. Petri

. 2021 ; 5 (2) : 549-568. [pub] 20210603

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21024618

While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data's apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain's functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data's topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, wefind that those that track topological features optimally distinguish experimentally defined brain states.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21024618
003      
CZ-PrNML
005      
20211013133836.0
007      
ta
008      
211006s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/netn_a_00190 $2 doi
035    __
$a (PubMed)34189377
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Billings, Jacob $u Mathematics and Complex Systems Research Area, ISI Foundation, Turin, Italy
245    10
$a Simplicial and topological descriptions of human brain dynamics / $c J. Billings, M. Saggar, J. Hlinka, S. Keilholz, G. Petri
520    9_
$a While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data's apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain's functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data's topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, wefind that those that track topological features optimally distinguish experimentally defined brain states.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Saggar, Manish $u Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
700    1_
$a Hlinka, Jaroslav $u Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Keilholz, Shella $u Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
700    1_
$a Petri, Giovanni $u Mathematics and Complex Systems Research Area, ISI Foundation, Turin, Italy
773    0_
$w MED00208006 $t Network neuroscience (Cambridge, Mass.) $x 2472-1751 $g Roč. 5, č. 2 (2021), s. 549-568
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34189377 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20211006 $b ABA008
991    __
$a 20211013133833 $b ABA008
999    __
$a ind $b bmc $g 1708399 $s 1145115
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 5 $c 2 $d 549-568 $e 20210603 $i 2472-1751 $m Network neuroscience $n Netw. neurosci. $x MED00208006
LZP    __
$a Pubmed-20211006

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...