• This record comes from PubMed

Simplicial and topological descriptions of human brain dynamics

. 2021 ; 5 (2) : 549-568. [epub] 20210603

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data's apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain's functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data's topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, wefind that those that track topological features optimally distinguish experimentally defined brain states.

See more in PubMed

Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., … Wang, W. (2019). Unsupervised inductive graph-level representation learning via graph-graph proximity. 10.24963/ijcai.2019/275 DOI

Basso, E., Arai, M., & Dabaghian, Y. (2016). Gamma synchronization influences map formation time in a topological model of spatial learning. PLoS Computational Biology, 12(9), e1005114. https://doi.org/10.1371/journal.pcbi.1005114, 27636199 PubMed DOI PMC

Battaglia, D., & Brovelli, A. (2020). Functional connectivity and neuronal dynamics: Insights from computational methods. In Poeppel D., Mangun G. R., & Gazzaniga M. S. (Eds.), The cognitive neuroscience (6th ed.).

Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., … Petri, G. (2020). Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 874, 1–92. 10.1016/j.physrep.2020.05.004 DOI

Billings, J., Medda, A., Shakil, S., Shen, X., Kashyap, A., Chen, S., … Keilholz, S. D. (2017). Instantaneous brain dynamics mapped to a continuous state space. NeuroImage, 162, 344–352. https://doi.org/10.1016/j.neuroimage.2017.08.042, 28823826 PubMed DOI PMC

Billings, J., Thompson, G., Pan, W.-J., Magnuson, M. E., Medda, A., & Keilholz, S. (2018). Disentangling multispectral functional connectivity with wavelets. Frontiers in Neuroscience, 12, 812. https://doi.org/10.3389/fnins.2018.00812, 30459548 PubMed DOI PMC

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541. https://doi.org/10.1002/mrm.1910340409, 8524021 PubMed DOI

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011, 21795627 PubMed DOI PMC

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575, 19190637 PubMed DOI

Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262–274. https://doi.org/10.1016/j.neuron.2014.10.015, 25374354 PubMed DOI PMC

Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255–308. 10.1090/S0273-0979-09-01249-X DOI

Carriere, M., Cuturi, M., & Oudot, S. (2017). Sliced Wasserstein kernel for persistence diagrams. In International conference on machine learning (pp. 664–673).

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., & Fiete, I. (2019). The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nature Neuroscience, 22(9), 1512–1520. https://doi.org/10.1038/s41593-019-0460-x, 31406365 PubMed DOI

Chung, M. K., Lee, H., Di Christofano, A., Ombao, H., & Solo, V. (2019). Exact topological inference of the resting-state brain networks in twins. Network Neuroscience, 3(3), 674–694. https://doi.org/10.1162/netn_a_00091, 31410373 PubMed DOI PMC

Curto, C. (2017). What can topology tell us about the neural code? Bulletin of the American Mathematical Society, 54(1), 63–78. 10.1090/bull/1554 DOI

Dabaghian, Y., Brandt, V. L., & Frank, L. M. (2014). Reconceiving the hippocampal map as a topological template. eLife, 3, e03476. https://doi.org/10.7554/eLife.03476, 25141375 PubMed DOI PMC

Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure and Function, 213(6), 525–533. https://doi.org/10.1007/s00429-009-0208-6, 19565262 PubMed DOI

De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Dualities in persistent (co)homology. Inverse Problems, 27(12), 124003. 10.1088/0266-5611/27/12/124003 DOI

Duman, A. N., Tatar, A. E., Pirim, H., Duman, A. N., Tatar, A. E., & Pirim, H. (2019). Uncovering dynamic brain reconfiguration in MEG working memory n-back task using topological data analysis. Brain Sciences, 9(6), 144. https://doi.org/10.3390/brainsci9060144, 31248185 PubMed DOI PMC

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete and Computational Geometry, 28(4), 511–533. 10.1007/s00454-002-2885-2 DOI

Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Frontiers in Neuroscience, 13, 585. https://doi.org/10.3389/fnins.2019.00585, 31249501 PubMed DOI PMC

Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24(1), 395–458. 10.1146/annurev.fl.24.010192.002143 DOI

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664–1671. https://doi.org/10.1038/nn.4135, 26457551 PubMed DOI PMC

Giusti, C., Ghrist, R., & Bassett, D. S. (2016). Two’s company, three (or more) is a simplex. Journal of Computational Neuroscience, 41(1), 1–14. https://doi.org/10.1007/s10827-016-0608-6, 27287487 PubMed DOI PMC

Giusti, C., Pastalkova, E., Curto, C., & Itskov, V. (2015). Clique topology reveals intrinsic geometric structure in neural correlations. Proceedings of the National Academy of Sciences, 112(44), 13455–13460. https://doi.org/10.1073/pnas.1506407112, 26487684 PubMed DOI PMC

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., … Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178. https://doi.org/10.1038/nature18933, 27437579 PubMed DOI PMC

Gonzalez-Castillo, J., Hoy, C. W., Handwerker, D. A., Robinson, M. E., Buchanan, L. C., Saad, Z. S., & Bandettini, P. A. (2015). Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proceedings of the National Academy of Sciences, 112(28), 8762–8767. https://doi.org/10.1073/pnas.1501242112, 26124112 PubMed DOI PMC

Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex, 26(1), 288–303. https://doi.org/10.1093/cercor/bhu239, 25316338 PubMed DOI PMC

Guerra, M., De Gregorio, A., Fugacci, U., Petri, G., & Vaccarino, F. (2020). Homological scaffold via minimal homology bases. arXiv:2004.11606. https://doi.org/10.1038/s41598-021-84486-1, 33686171 PubMed DOI PMC

Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage, 105, 525–535. https://doi.org/10.1016/j.neuroimage.2014.11.001, 25462790 PubMed DOI

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079, 23707587 PubMed DOI PMC

Ibáñez-Marcelo, E., Campioni, L., Phinyomark, A., Petri, G., & Santarcangelo, E. L. (2019). Topology highlights mesoscopic functional equivalence between imagery and perception: The case of hypnotizability. NeuroImage, 200, 437–449. https://doi.org/10.1016/j.neuroimage.2019.06.044, 31276797 PubMed DOI

Kunert-Graf, J. M., Eschenburg, K. M., Galas, D. J., Kutz, J. N., Rane, S. D., & Brunton, B. W. (2019). Extracting reproducible time-resolved resting state networks using dynamic mode decomposition. Frontiers in Computational Neuroscience, 13, 75. https://doi.org/10.3389/fncom.2019.00075, 31736734 PubMed DOI PMC

Lerda, G. (2016). University of Torino, Torino, Italy (Unpublished doctoral dissertation). University of Turino.

Lord, L. D., Expert, P., Fernandes, H. M., Petri, G., Van Hartevelt, T. J., Vaccarino, F., … Kringelbach, M. L. (2016). Insights into brain architectures from the homological scaffolds of functional connectivity networks. Frontiers in Systems Neuroscience, 10(Nov). https://doi.org/10.3389/fnsys.2016.00085, 27877115 PubMed DOI PMC

Lurie, D. J., Kessler, D., Bassett, D. S., Betzel, R. F., Breakspear, M., Kheilholz, S., … Calhoun, V. D. (2020). Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Network Neuroscience, 4(1), 30–69. https://doi.org/10.1162/netn_a_00116, 32043043 PubMed DOI PMC

Marwan, N., Thiel, M., & Nowaczyk, N. R. (2002). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 9(3), 325–331. 10.5194/npg-9-325-2002 DOI

McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform Manifold Approximation and Projection for dimension reduction.

Mileyko, Y., Mukherjee, S., & Harer, J. (2011). Probability measures on the space of persistence diagrams. Inverse Problems, 27(12), 124007. 10.1088/0266-5611/27/12/124007 DOI

Patania, A., Vaccarino, F., & Petri, G. (2017). Topological analysis of data. EPJ Data Science, 6, 1–6. 10.1140/epjds/s13688-017-0104-x PubMed DOI

Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J., & Vaccarino, F. (2014). Homological scaffolds of brain functional networks. Journal of the Royal Society Interface, 11(101), 20140873. https://doi.org/10.1098/rsif.2014.0873, 25401177 PubMed DOI PMC

Petri, G., Scolamiero, M., Donato, I., & Vaccarino, F. (2013). Topological strata of weighted complex networks. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0066506, 23805226 PubMed DOI PMC

Phinyomark, A., Ibanez-Marcelo, E., & Petri, G. (2017). Resting-state fMRI functional connectivity: Big data preprocessing pipelines and topological data analysis. IEEE Transactions on Big Data, 3(4), 415–428. 10.1109/TBDATA.2017.2734883 DOI

Rasetti, M. (2017). The ‘Life Machine’: A quantum metaphor for living matter. International Journal of Theoretical Physics, 56(1), 145–167. 10.1007/s10773-016-3177-6 DOI

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., … Markram, H. (2017). Cliques of neurons bound into cavities provide a missing link between structure and function. Frontiers in Computational Neuroscience, 11, 48. https://doi.org/10.3389/fncom.2017.00048, 28659782 PubMed DOI PMC

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G., Glover, G., & Reiss, A. L. (2018). Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03664-4, 29643350 PubMed DOI PMC

Sizemore, A., Giusti, C., & Bassett, D. S. (2017). Classification of weighted networks through mesoscale homological features. Journal of Complex Networks, 5(2), 245–273. 10.1093/comnet/cnw013 DOI

Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., & Bassett, D. S. (2018). Cliques and cavities in the human connectome. Journal of Computational Neuroscience, 44(1), 115–145. https://doi.org/10.1007/s10827-017-0672-6, 29143250 PubMed DOI PMC

Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R., & Bassett, D. S. (2019). The importance of the whole: Topological data analysis for the network neuroscientist. Network Neuroscience, 3(3), 656–673. https://doi.org/10.1162/netn_a_00073, 31410372 PubMed DOI PMC

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106(31), 13040–13045. https://doi.org/10.1073/pnas.0905267106, 19620724 PubMed DOI PMC

Stolz, B. (2014). Computational topology in neuroscience (Unpublished doctoral dissertation). University of Oxford.

Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010). An fMRI study of intra-individual functional topography in the human cerebellum. Behavioural Neurology, 23(1–2), 65–79. https://doi.org/10.1155/2010/840942, 20714062 PubMed DOI PMC

Thompson, W. H., & Fransson, P. (2015). The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain. Neuroimage, 121, 227–242. https://doi.org/10.1016/j.neuroimage.2015.07.022, 26169321 PubMed DOI

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 DOI

Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO–monsoon system. Journal of Climate, 12(8), 2679–2690. 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 DOI

Tralie, C., Saul, N., & Bar-On, R. (2018). Ripser.py: A lean persistent homology library for Python. The Journal of Open Source Software, 3(29), 925. 10.21105/joss.00925 DOI

Yoo, J., Kim, E. Y., Ahn, Y. M., & Ye, J. C. (2016). Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages. Journal of Neuroscience Methods, 267, 1–13. https://doi.org/10.1016/j.jneumeth.2016.04.001, 27060383 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...