Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Estimating long-term health risks after breast cancer radiotherapy: merging evidence from low and high doses

C. Simonetto, D. Wollschläger, P. Kundrát, A. Ulanowski, J. Becker, N. Castelletti, D. Güthlin, E. Shemiakina, M. Eidemüller

. 2021 ; 60 (3) : 459-474. [pub] 20210717

Language English Country Germany

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 2002-06-01 to 1 year ago
Medline Complete (EBSCOhost) from 2011-03-01 to 1 year ago
Health & Medicine (ProQuest) from 2002-06-01 to 1 year ago

In breast cancer radiotherapy, substantial radiation exposure of organs other than the treated breast cannot be avoided, potentially inducing second primary cancer or heart disease. While distant organs and large parts of nearby ones receive doses in the mGy-Gy range, small parts of the heart, lung and bone marrow often receive doses as high as 50 Gy. Contemporary treatment planning allows for considerable flexibility in the distribution of this exposure. To optimise treatment with regards to long-term health risks, evidence-based risk estimates are required for the entire broad range of exposures. Here, we thus propose an approach that combines data from medical and epidemiological studies with different exposure conditions. Approximating cancer induction as a local process, we estimate organ cancer risks by integrating organ-specific dose-response relationships over the organ dose distributions. For highly exposed organ parts, specific high-dose risk models based on studies with medical exposure are applied. For organs or their parts receiving relatively low doses, established dose-response models based on radiation-epidemiological data are used. Joining the models in the intermediate dose range leads to a combined, in general non-linear, dose response supported by data over the whole relevant dose range. For heart diseases, a linear model consistent with high- and low-dose studies is presented. The resulting estimates of long-term health risks are largely compatible with rate ratios observed in randomised breast cancer radiotherapy trials. The risk models have been implemented in a software tool PASSOS that estimates long-term risks for individual breast cancer patients.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025272
003      
CZ-PrNML
005      
20211026133954.0
007      
ta
008      
211013s2021 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00411-021-00924-8 $2 doi
035    __
$a (PubMed)34275005
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Simonetto, Cristoforo $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
245    10
$a Estimating long-term health risks after breast cancer radiotherapy: merging evidence from low and high doses / $c C. Simonetto, D. Wollschläger, P. Kundrát, A. Ulanowski, J. Becker, N. Castelletti, D. Güthlin, E. Shemiakina, M. Eidemüller
520    9_
$a In breast cancer radiotherapy, substantial radiation exposure of organs other than the treated breast cannot be avoided, potentially inducing second primary cancer or heart disease. While distant organs and large parts of nearby ones receive doses in the mGy-Gy range, small parts of the heart, lung and bone marrow often receive doses as high as 50 Gy. Contemporary treatment planning allows for considerable flexibility in the distribution of this exposure. To optimise treatment with regards to long-term health risks, evidence-based risk estimates are required for the entire broad range of exposures. Here, we thus propose an approach that combines data from medical and epidemiological studies with different exposure conditions. Approximating cancer induction as a local process, we estimate organ cancer risks by integrating organ-specific dose-response relationships over the organ dose distributions. For highly exposed organ parts, specific high-dose risk models based on studies with medical exposure are applied. For organs or their parts receiving relatively low doses, established dose-response models based on radiation-epidemiological data are used. Joining the models in the intermediate dose range leads to a combined, in general non-linear, dose response supported by data over the whole relevant dose range. For heart diseases, a linear model consistent with high- and low-dose studies is presented. The resulting estimates of long-term health risks are largely compatible with rate ratios observed in randomised breast cancer radiotherapy trials. The risk models have been implemented in a software tool PASSOS that estimates long-term risks for individual breast cancer patients.
650    _2
$a nádory prsu $x radioterapie $7 D001943
650    _2
$a vztah dávky záření a odpovědi $7 D004307
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a nemoci srdce $7 D006331
650    _2
$a lidé $7 D006801
650    _2
$a leukemie $7 D007938
650    _2
$a nádory plic $7 D008175
650    12
$a teoretické modely $7 D008962
650    _2
$a hodnocení rizik $7 D018570
650    _2
$a kouření $7 D012907
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Wollschläger, Daniel $u Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Obere Zahlbacher Str. 69, 55131, Mainz, Germany
700    1_
$a Kundrát, Pavel $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany $u Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
700    1_
$a Ulanowski, Alexander $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany $u IAEA Environment Laboratories, International Atomic Energy Agency, 2444, Seibersdorf, Austria
700    1_
$a Becker, Janine $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
700    1_
$a Castelletti, Noemi $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany $u Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802, Munich, Germany
700    1_
$a Güthlin, Denise $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany $u Department of Radiation Protection and Health, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
700    1_
$a Shemiakina, Elena $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
700    1_
$a Eidemüller, Markus $u Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. markus.eidemueller@helmholtz-muenchen.de
773    0_
$w MED00004025 $t Radiation and environmental biophysics $x 1432-2099 $g Roč. 60, č. 3 (2021), s. 459-474
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34275005 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026134000 $b ABA008
999    __
$a ok $b bmc $g 1714360 $s 1145779
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 60 $c 3 $d 459-474 $e 20210717 $i 1432-2099 $m Radiation and environmental biophysics $n Radiat Environ Biophys $x MED00004025
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...