-
Something wrong with this record ?
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair
AA. Demin, K. Hirota, M. Tsuda, M. Adamowicz, R. Hailstone, J. Brazina, W. Gittens, I. Kalasova, Z. Shao, S. Zha, H. Sasanuma, H. Hanzlikova, S. Takeda, KW. Caldecott
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
694996
European Research Council - International
MR/P010121/1
Medical Research Council - United Kingdom
R01 CA226852
NCI NIH HHS - United States
NLK
Cell Press Free Archives
from 1997-12-01 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Free Medical Journals
from 1997 to 1 year ago
Open Access Digital Library
from 1997-12-01
- MeSH
- Cell Line MeSH
- DNA-Binding Proteins metabolism MeSH
- DNA Ligase ATP metabolism MeSH
- DNA Polymerase beta metabolism MeSH
- DNA genetics MeSH
- Fibroblasts drug effects metabolism MeSH
- DNA Breaks, Single-Stranded MeSH
- Humans MeSH
- DNA Repair drug effects genetics MeSH
- Poly(ADP-ribose) Polymerase Inhibitors pharmacology MeSH
- Poly (ADP-Ribose) Polymerase-1 metabolism MeSH
- Poly(ADP-ribose) Polymerases metabolism MeSH
- DNA Damage drug effects genetics MeSH
- X-ray Repair Cross Complementing Protein 1 metabolism MeSH
- Protein Binding drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.
Department of Chemistry Tokyo Metropolitan University Minami Osawa Hachioji shi Tokyo 192 0397 Japan
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025351
- 003
- CZ-PrNML
- 005
- 20211026133909.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.molcel.2021.05.009 $2 doi
- 035 __
- $a (PubMed)34102106
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Demin, Annie A $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
- 245 10
- $a XRCC1 prevents toxic PARP1 trapping during DNA base excision repair / $c AA. Demin, K. Hirota, M. Tsuda, M. Adamowicz, R. Hailstone, J. Brazina, W. Gittens, I. Kalasova, Z. Shao, S. Zha, H. Sasanuma, H. Hanzlikova, S. Takeda, KW. Caldecott
- 520 9_
- $a Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a DNA $x genetika $7 D004247
- 650 _2
- $a jednořetězcové zlomy DNA $7 D053904
- 650 _2
- $a poškození DNA $x účinky léků $x genetika $7 D004249
- 650 _2
- $a DNA-ligasa ATP $x metabolismus $7 D000072481
- 650 _2
- $a DNA-polymerasa beta $x metabolismus $7 D019951
- 650 _2
- $a oprava DNA $x účinky léků $x genetika $7 D004260
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a fibroblasty $x účinky léků $x metabolismus $7 D005347
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a poly(ADP-ribosa)polymerasa 1 $x metabolismus $7 D000071137
- 650 _2
- $a PARP inhibitory $x farmakologie $7 D000067856
- 650 _2
- $a poly(ADP-ribosa)polymerasy $x metabolismus $7 D011065
- 650 _2
- $a vazba proteinů $x účinky léků $7 D011485
- 650 _2
- $a protein XRCC1 $x metabolismus $7 D000076105
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hirota, Kouji $u Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- 700 1_
- $a Tsuda, Masataka $u Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan; Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- 700 1_
- $a Adamowicz, Marek $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
- 700 1_
- $a Hailstone, Richard $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
- 700 1_
- $a Brazina, Jan $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
- 700 1_
- $a Gittens, William $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
- 700 1_
- $a Kalasova, Ilona $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Shao, Zhengping $u Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
- 700 1_
- $a Zha, Shan $u Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- 700 1_
- $a Sasanuma, Hiroyuki $u Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
- 700 1_
- $a Hanzlikova, Hana $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Takeda, Shunichi $u Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address: stakeda@rg.med.kyoto-u.ac.jp
- 700 1_
- $a Caldecott, Keith W $u Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic. Electronic address: k.w.caldecott@sussex.ac.uk
- 773 0_
- $w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 81, č. 14 (2021), s. 3018-3030.e5
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34102106 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133915 $b ABA008
- 999 __
- $a ok $b bmc $g 1714410 $s 1145858
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 81 $c 14 $d 3018-3030.e5 $e 20210607 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
- GRA __
- $a 694996 $p European Research Council $2 International
- GRA __
- $a MR/P010121/1 $p Medical Research Council $2 United Kingdom
- GRA __
- $a R01 CA226852 $p NCI NIH HHS $2 United States
- LZP __
- $a Pubmed-20211013