-
Something wrong with this record ?
Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution
V. Borůvková, WM. Howell, D. Matoulek, R. Symonová
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2010
PubMed Central
from 2010
Europe PubMed Central
from 2010
ProQuest Central
from 2010-03-01
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
PubMed
33671814
DOI
10.3390/genes12020312
Knihovny.cz E-resources
- MeSH
- Chromosomes genetics MeSH
- Cytogenetics * MeSH
- Genome genetics MeSH
- Evolution, Molecular * MeSH
- Vertebrates classification genetics MeSH
- Birds classification genetics MeSH
- Recombination, Genetic genetics MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Fishes classification genetics MeSH
- Base Composition genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
Department of Biological and Environmental Sciences Samford University Birmingham AL 35226 USA
Faculty of Science University of Hradec Kralove 500 03 Hradec Kralove Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026058
- 003
- CZ-PrNML
- 005
- 20211026133235.0
- 007
- ta
- 008
- 211013s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes12020312 $2 doi
- 035 __
- $a (PubMed)33671814
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Borůvková, Veronika $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- 245 10
- $a Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution / $c V. Borůvková, WM. Howell, D. Matoulek, R. Symonová
- 520 9_
- $a Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a zastoupení bazí $x genetika $7 D001482
- 650 _2
- $a ptáci $x klasifikace $x genetika $7 D001717
- 650 _2
- $a chromozomy $x genetika $7 D002875
- 650 12
- $a cytogenetika $7 D003582
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a ryby $x klasifikace $x genetika $7 D005399
- 650 _2
- $a genom $x genetika $7 D016678
- 650 _2
- $a rekombinace genetická $x genetika $7 D011995
- 650 _2
- $a repetitivní sekvence nukleových kyselin $7 D012091
- 650 _2
- $a obratlovci $x klasifikace $x genetika $7 D014714
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Howell, W Mike $u Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35226, USA
- 700 1_
- $a Matoulek, Dominik $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- 700 1_
- $a Symonová, Radka $u Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 12, č. 2 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33671814 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133241 $b ABA008
- 999 __
- $a ok $b bmc $g 1714927 $s 1146565
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 12 $c 2 $e 20210222 $i 2073-4425 $m Genes $n Genes $x MED00174652
- LZP __
- $a Pubmed-20211013