• Je něco špatně v tomto záznamu ?

Simultaneous use of Interphako interference contrast and polarization microscopy in the study of microorganisms

Z. Žižka

. 2021 ; 66 (2) : 241-246. [pub] 20201125

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21028038

Grantová podpora
LO 1509 Ministerstvo Školství, Mládeže a Tělovýchovy

Simultaneous application of polarization microscopy and Interphako interference contrast has been used to study the internal structure of algal cells. The interference contrast technique showed fine cell structures (important is the selection of interference colors according to the Mach-Zehnder interferometer setting). In a polarization microscope, the crossed polarization filters together with the first-order quartz compensator mounted turntable showed the maximum birefringence of the individual structures. Material containing green algae was collected in the villages Sýkořice and Zbečno, Protected Landscape Area (PLA) Křivoklátsko. The objects were studied in a Carl Zeiss Jena NfpK laboratory microscope equipped with an In 160 base body with an Interphako In contrast interference module including a Mach-Zehnder interferometer with variable phase contrast, a special condenser with interchangeable aperture plates, a turntable, a Meopta Praha polarizer, a LOMO Sankt Petersburg analyzer, and a quartz compensator with first-order red and the digital camera DSLR Nikon D 70. Green algae of three orders were studied: Siphonocladales, Zygnematales, and Desmidiales. Anisotropic structures were found in all studied representatives of the green algae of the phylum Chlorophyta. Especially their cell walls showed strong birefringence (in all representatives of these orders). On the other hand, a representative of the order Siphonocladales (the genus Cladophora, Cladophoraceae, Ulvophyceae) was rarely found to display weak birefringent granules of storage substances due to the setting of the Mach-Zehnder interferometer and the use of the first-order compensator (interference colors are intensified). In addition, a very weak birefringence of periphyton cells (microbial biofilm) was found. In the study of the second algae of the genus Spirogyra (Zygnemataceae, Zygnematales, Conjugatophyceae), a strongly birefringent connecting wall between algal cells was found in contrast to the weaker birefringence of the peripheral wall. It was the use of Interphako interference contrast together with polarization filters and a first-order quartz compensator that particularly emphasized the central part of the connecting wall. In the study of the twinned Pleurotaenium algae (Desmidiaceae, Desmidiales, Conjugatophyceae), a strongly birefringent wall was found along the periphery of the cell with a nucleus in the middle part (isthmus). In this narrowing in the center of the cell, a sharply delimited birefringent edge of the cell wall is visible, especially when using Interphako interference contrast along with crossed polarization filters and a first-order quartz compensator. In conclusion, Interphako interference contrast provides a high degree of image contrast in a microscope and, if suitably simultaneously complemented by polarization microscopy (including a first-order quartz compensator), it will allow us to infer some of the composition of the investigated structures. However, working with Interphako interference contrast is considerably more difficult (setting Mach-Zehnder interferometer) than using other contrast techniques (positive and negative phase contrast, color contrast, relief contrast, and dark field).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21028038
003      
CZ-PrNML
005      
20250610110244.0
007      
ta
008      
211105s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s12223-020-00839-9 $2 doi
035    __
$a (PubMed)33241462
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Žižka, Zdeněk, $u Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4-Krč, Czech Republic. zizka@biomed.cas.cz $d 1944- $7 xx0117543
245    10
$a Simultaneous use of Interphako interference contrast and polarization microscopy in the study of microorganisms / $c Z. Žižka
520    9_
$a Simultaneous application of polarization microscopy and Interphako interference contrast has been used to study the internal structure of algal cells. The interference contrast technique showed fine cell structures (important is the selection of interference colors according to the Mach-Zehnder interferometer setting). In a polarization microscope, the crossed polarization filters together with the first-order quartz compensator mounted turntable showed the maximum birefringence of the individual structures. Material containing green algae was collected in the villages Sýkořice and Zbečno, Protected Landscape Area (PLA) Křivoklátsko. The objects were studied in a Carl Zeiss Jena NfpK laboratory microscope equipped with an In 160 base body with an Interphako In contrast interference module including a Mach-Zehnder interferometer with variable phase contrast, a special condenser with interchangeable aperture plates, a turntable, a Meopta Praha polarizer, a LOMO Sankt Petersburg analyzer, and a quartz compensator with first-order red and the digital camera DSLR Nikon D 70. Green algae of three orders were studied: Siphonocladales, Zygnematales, and Desmidiales. Anisotropic structures were found in all studied representatives of the green algae of the phylum Chlorophyta. Especially their cell walls showed strong birefringence (in all representatives of these orders). On the other hand, a representative of the order Siphonocladales (the genus Cladophora, Cladophoraceae, Ulvophyceae) was rarely found to display weak birefringent granules of storage substances due to the setting of the Mach-Zehnder interferometer and the use of the first-order compensator (interference colors are intensified). In addition, a very weak birefringence of periphyton cells (microbial biofilm) was found. In the study of the second algae of the genus Spirogyra (Zygnemataceae, Zygnematales, Conjugatophyceae), a strongly birefringent connecting wall between algal cells was found in contrast to the weaker birefringence of the peripheral wall. It was the use of Interphako interference contrast together with polarization filters and a first-order quartz compensator that particularly emphasized the central part of the connecting wall. In the study of the twinned Pleurotaenium algae (Desmidiaceae, Desmidiales, Conjugatophyceae), a strongly birefringent wall was found along the periphery of the cell with a nucleus in the middle part (isthmus). In this narrowing in the center of the cell, a sharply delimited birefringent edge of the cell wall is visible, especially when using Interphako interference contrast along with crossed polarization filters and a first-order quartz compensator. In conclusion, Interphako interference contrast provides a high degree of image contrast in a microscope and, if suitably simultaneously complemented by polarization microscopy (including a first-order quartz compensator), it will allow us to infer some of the composition of the investigated structures. However, working with Interphako interference contrast is considerably more difficult (setting Mach-Zehnder interferometer) than using other contrast techniques (positive and negative phase contrast, color contrast, relief contrast, and dark field).
650    _2
$a dvojitý lom $7 D001718
650    12
$a Chlorophyta $7 D000460
650    _2
$a mikroskopie fázově kontrastní $7 D008858
650    _2
$a polarizační mikroskopie $7 D008859
650    12
$a Zygnematales $7 D058129
655    _2
$a časopisecké články $7 D016428
773    0_
$w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 66, č. 2 (2021), s. 241-246
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33241462 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211105 $b ABA008
991    __
$a 20250610110238 $b ABA008
999    __
$a ok $b bmc $g 1719427 $s 1148583
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 66 $c 2 $d 241-246 $e 20201125 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
GRA    __
$a LO 1509 $p Ministerstvo Školství, Mládeže a Tělovýchovy
LZP    __
$a Pubmed-20211105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...