• Je něco špatně v tomto záznamu ?

Human skin is colonized by T cells that recognize CD1a independently of lipid

RN. Cotton, TY. Cheng, M. Wegrecki, J. Le Nours, DP. Orgill, B. Pomahac, SG. Talbot, RA. Willis, JD. Altman, A. de Jong, G. Ogg, I. Van Rhijn, J. Rossjohn, RA. Clark, DB. Moody

. 2021 ; 131 (1) : . [pub] 20210104

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22000902

Grantová podpora
R01 AI127654 NIAID NIH HHS - United States
P30 AR069625 NIAMS NIH HHS - United States
MC_UU_00008/5 Medical Research Council - United Kingdom
Department of Health - United Kingdom
T32 AR007530 NIAMS NIH HHS - United States
209222/Z/17/Z Wellcome Trust - United Kingdom
R01 AR074037 NIAMS NIH HHS - United States
R01 AR048632 NIAMS NIH HHS - United States
K01 AR068475 NIAMS NIH HHS - United States
Wellcome Trust - United Kingdom
MC_EX_MR/R022550/1 Medical Research Council - United Kingdom

CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A' roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22000902
003      
CZ-PrNML
005      
20220106132551.0
007      
ta
008      
220106s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1172/JCI140706 $2 doi
035    __
$a (PubMed)33393500
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cotton, Rachel N $u Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA $u Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
245    10
$a Human skin is colonized by T cells that recognize CD1a independently of lipid / $c RN. Cotton, TY. Cheng, M. Wegrecki, J. Le Nours, DP. Orgill, B. Pomahac, SG. Talbot, RA. Willis, JD. Altman, A. de Jong, G. Ogg, I. Van Rhijn, J. Rossjohn, RA. Clark, DB. Moody
520    9_
$a CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A' roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.
650    _2
$a antigeny CD1 $x imunologie $7 D018949
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a buňky K562 $7 D020014
650    _2
$a membránové lipidy $x imunologie $7 D008563
650    _2
$a receptory antigenů T-buněk $x imunologie $7 D011948
650    _2
$a kůže $x imunologie $7 D012867
650    _2
$a T-lymfocyty $x imunologie $7 D013601
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cheng, Tan-Yun $u Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
700    1_
$a Wegrecki, Marcin $u Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia $u Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
700    1_
$a Le Nours, Jérôme $u Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia $u Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
700    1_
$a Orgill, Dennis P $u Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts, USA
700    1_
$a Pomahač, Bohdan, $u Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts, USA $d 1971- $7 xx0117402
700    1_
$a Talbot, Simon G $u Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts, USA
700    1_
$a Willis, Richard A $u NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA $u Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA $u Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
700    1_
$a Altman, John D $u NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA $u Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA $u Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
700    1_
$a de Jong, Annemieke $u Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
700    1_
$a Ogg, Graham $u MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
700    1_
$a Van Rhijn, Ildiko $u Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA $u School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
700    1_
$a Rossjohn, Jamie $u Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia $u Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia $u Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, United Kingdom
700    1_
$a Clark, Rachael A $u Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
700    1_
$a Moody, D Branch $u Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
773    0_
$w MED00002590 $t The Journal of clinical investigation $x 1558-8238 $g Roč. 131, č. 1 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33393500 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220106 $b ABA008
991    __
$a 20220106132547 $b ABA008
999    __
$a ok $b bmc $g 1743237 $s 1152048
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 131 $c 1 $e 20210104 $i 1558-8238 $m The Journal of clinical investigation $n J Clin Invest $x MED00002590
GRA    __
$a R01 AI127654 $p NIAID NIH HHS $2 United States
GRA    __
$a P30 AR069625 $p NIAMS NIH HHS $2 United States
GRA    __
$a MC_UU_00008/5 $p Medical Research Council $2 United Kingdom
GRA    __
$p Department of Health $2 United Kingdom
GRA    __
$a T32 AR007530 $p NIAMS NIH HHS $2 United States
GRA    __
$a 209222/Z/17/Z $p Wellcome Trust $2 United Kingdom
GRA    __
$a R01 AR074037 $p NIAMS NIH HHS $2 United States
GRA    __
$a R01 AR048632 $p NIAMS NIH HHS $2 United States
GRA    __
$a K01 AR068475 $p NIAMS NIH HHS $2 United States
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a MC_EX_MR/R022550/1 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20220106

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace