• Je něco špatně v tomto záznamu ?

Enzymatic Synthesis of 3'-5', 3'-5' Cyclic Dinucleotides, Their Binding Properties to the Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations

B. Novotná, L. Holá, M. Staś, O. Gutten, M. Smola, M. Zavřel, Z. Vavřina, M. Buděšínský, R. Liboska, F. Chevrier, J. Dobiaš, E. Boura, L. Rulíšek, G. Birkuš

. 2021 ; 60 (48) : 3714-3727. [pub] 20211117

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003036

The 3'-5', 3'-5' cyclic dinucleotides (3'3'CDNs) are bacterial second messengers that can also bind to the stimulator of interferon genes (STING) adaptor protein in vertebrates and activate the host innate immunity. Here, we profiled the substrate specificity of four bacterial dinucleotide synthases from Vibrio cholerae (DncV), Bacillus thuringiensis (btDisA), Escherichia coli (dgcZ), and Thermotoga maritima (tDGC) using a library of 33 nucleoside-5'-triphosphate analogues and then employed these enzymes to synthesize 24 3'3'CDNs. The STING affinity of CDNs was evaluated in cell-based and biochemical assays, and their ability to induce cytokines was determined by employing human peripheral blood mononuclear cells. Interestingly, the prepared heterodimeric 3'3'CDNs bound to the STING much better than their homodimeric counterparts and showed similar or better potency than bacterial 3'3'CDNs. We also rationalized the experimental findings by in-depth STING-CDN structure-activity correlations by dissecting computed interaction free energies into a set of well-defined and intuitive terms. To this aim, we employed state-of-the-art methods of computational chemistry, such as quantum mechanics/molecular mechanics (QM/MM) calculations, and complemented the computed results with the {STING:3'3'c-di-ara-AMP} X-ray crystallographic structure. QM/MM identified three outliers (mostly homodimers) for which we have no clear explanation of their impaired binding with respect to their heterodimeric counterparts, whereas the R2 = 0.7 correlation between the computed ΔG'int_rel and experimental ΔTm's for the remaining ligands has been very encouraging.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003036
003      
CZ-PrNML
005      
20230519085015.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biochem.1c00692 $2 doi
035    __
$a (PubMed)34788017
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Novotná, Barbora $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic $u Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
245    10
$a Enzymatic Synthesis of 3'-5', 3'-5' Cyclic Dinucleotides, Their Binding Properties to the Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations / $c B. Novotná, L. Holá, M. Staś, O. Gutten, M. Smola, M. Zavřel, Z. Vavřina, M. Buděšínský, R. Liboska, F. Chevrier, J. Dobiaš, E. Boura, L. Rulíšek, G. Birkuš
520    9_
$a The 3'-5', 3'-5' cyclic dinucleotides (3'3'CDNs) are bacterial second messengers that can also bind to the stimulator of interferon genes (STING) adaptor protein in vertebrates and activate the host innate immunity. Here, we profiled the substrate specificity of four bacterial dinucleotide synthases from Vibrio cholerae (DncV), Bacillus thuringiensis (btDisA), Escherichia coli (dgcZ), and Thermotoga maritima (tDGC) using a library of 33 nucleoside-5'-triphosphate analogues and then employed these enzymes to synthesize 24 3'3'CDNs. The STING affinity of CDNs was evaluated in cell-based and biochemical assays, and their ability to induce cytokines was determined by employing human peripheral blood mononuclear cells. Interestingly, the prepared heterodimeric 3'3'CDNs bound to the STING much better than their homodimeric counterparts and showed similar or better potency than bacterial 3'3'CDNs. We also rationalized the experimental findings by in-depth STING-CDN structure-activity correlations by dissecting computed interaction free energies into a set of well-defined and intuitive terms. To this aim, we employed state-of-the-art methods of computational chemistry, such as quantum mechanics/molecular mechanics (QM/MM) calculations, and complemented the computed results with the {STING:3'3'c-di-ara-AMP} X-ray crystallographic structure. QM/MM identified three outliers (mostly homodimers) for which we have no clear explanation of their impaired binding with respect to their heterodimeric counterparts, whereas the R2 = 0.7 correlation between the computed ΔG'int_rel and experimental ΔTm's for the remaining ligands has been very encouraging.
650    _2
$a Bacillus thuringiensis $x enzymologie $x ultrastruktura $7 D001413
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a cytokiny $x chemie $x genetika $7 D016207
650    _2
$a Escherichia coli $x enzymologie $x ultrastruktura $7 D004926
650    _2
$a lidé $7 D006801
650    _2
$a přirozená imunita $x genetika $7 D007113
650    _2
$a leukocyty mononukleární $x chemie $x enzymologie $7 D007963
650    _2
$a membránové proteiny $x chemie $x genetika $x ultrastruktura $7 D008565
650    _2
$a nukleotidy $x biosyntéza $x chemie $x genetika $7 D009711
650    _2
$a kvantová teorie $7 D011789
650    12
$a vztahy mezi strukturou a aktivitou $7 D013329
650    _2
$a substrátová specifita $7 D013379
650    _2
$a Thermotoga maritima $x enzymologie $x ultrastruktura $7 D020124
650    _2
$a Vibrio cholerae $x enzymologie $x ultrastruktura $7 D014734
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Holá, Lucie $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Staś, Monika $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Gutten, Ondrej $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Smola, Miroslav $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Zavřel, Martin $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Vavřina, Zdeněk $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic $u Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
700    1_
$a Buděšínský, Miloš $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Liboska, Radek $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Chevrier, Florian $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Dobiaš, Juraj $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Boura, Evzen $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Rulíšek, Lubomír $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic
700    1_
$a Birkuš, Gabriel, $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB, Flemingovo náměstí 2, Prague 16610, Czech Republic $d 1972- $7 xx0301324
773    0_
$w MED00009310 $t Biochemistry $x 1520-4995 $g Roč. 60, č. 48 (2021), s. 3714-3727
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34788017 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20230519085008 $b ABA008
999    __
$a ok $b bmc $g 1750719 $s 1154185
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 60 $c 48 $d 3714-3727 $e 20211117 $i 1520-4995 $m Biochemistry (Easton) $n Biochemistry $x MED00009310
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...