-
Something wrong with this record ?
Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering
H. Macková, H. Hlídková, Z. Kaberova, V. Proks, J. Kučka, V. Patsula, M. Vetrik, O. Janoušková, B. Podhorská, O. Pop-Georgievski, Š. Kubinová, D. Horák
Language English Country Netherlands
Document type Journal Article
- MeSH
- Biocompatible Materials pharmacology MeSH
- Hydrogels * MeSH
- Rats MeSH
- Methacrylates MeSH
- Mesenchymal Stem Cells * MeSH
- Polyhydroxyethyl Methacrylate MeSH
- Tissue Engineering MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003121
- 003
- CZ-PrNML
- 005
- 20220127150644.0
- 007
- ta
- 008
- 220113s2021 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.msec.2021.112500 $2 doi
- 035 __
- $a (PubMed)34857286
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Macková, Hana $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: mackova@imc.cas.cz
- 245 10
- $a Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering / $c H. Macková, H. Hlídková, Z. Kaberova, V. Proks, J. Kučka, V. Patsula, M. Vetrik, O. Janoušková, B. Podhorská, O. Pop-Georgievski, Š. Kubinová, D. Horák
- 520 9_
- $a Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biokompatibilní materiály $x farmakologie $7 D001672
- 650 12
- $a hydrogely $7 D020100
- 650 12
- $a mezenchymální kmenové buňky $7 D059630
- 650 _2
- $a methakryláty $7 D008689
- 650 _2
- $a polyhydroxyethylmethakrylát $7 D011102
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a tkáňové inženýrství $7 D023822
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hlídková, Helena $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Kaberova, Zhansaya $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Proks, Vladimír $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Kučka, Jan $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Patsula, Vitalii $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Vetrik, Miroslav $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Janoušková, Olga $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; Jan Purkyně University in Ústí nad Labem, Faculty of Science, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
- 700 1_
- $a Podhorská, Bohumila $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Pop-Georgievski, Ognen $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 700 1_
- $a Kubinová, Šárka $u Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic; Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- 700 1_
- $a Horák, Daniel $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- 773 0_
- $w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 131, č. - (2021), s. 112500
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34857286 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150640 $b ABA008
- 999 __
- $a ok $b bmc $g 1750784 $s 1154270
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 131 $c - $d 112500 $e 20211019 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
- LZP __
- $a Pubmed-20220113