• Something wrong with this record ?

Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering

H. Macková, H. Hlídková, Z. Kaberova, V. Proks, J. Kučka, V. Patsula, M. Vetrik, O. Janoušková, B. Podhorská, O. Pop-Georgievski, Š. Kubinová, D. Horák

. 2021 ; 131 (-) : 112500. [pub] 20211019

Language English Country Netherlands

Document type Journal Article

Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003121
003      
CZ-PrNML
005      
20220127150644.0
007      
ta
008      
220113s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.msec.2021.112500 $2 doi
035    __
$a (PubMed)34857286
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Macková, Hana $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: mackova@imc.cas.cz
245    10
$a Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering / $c H. Macková, H. Hlídková, Z. Kaberova, V. Proks, J. Kučka, V. Patsula, M. Vetrik, O. Janoušková, B. Podhorská, O. Pop-Georgievski, Š. Kubinová, D. Horák
520    9_
$a Research of degradable hydrogel polymeric materials exhibiting high water content and mechanical properties resembling tissues is crucial not only in drug delivery systems but also in tissue engineering, medical devices, and biomedical-healthcare sensors. Therefore, we newly offer development of hydrogels based on poly(2-hydroxyethyl methacrylate-co-2-(acetylthio) ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] and optimization of their mechanical and in vitro and in vivo degradability. P(HEMA-ATEMA-MPC) hydrogels differed in chemical composition, degree of crosslinking, and starting molar mass of polymers (15, 19, and 30 kDa). Polymer precursors were synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization using 2-(acetylthio)ethyl methacrylate containing protected thiol groups, which enabled crosslinking and gel formation. Elastic modulus of hydrogels increased with the degree of crosslinking (Slaughter et al., 2009) [1]. In vitro and in vivo controlled degradation was confirmed using glutathione and subcutaneous implantation of hydrogels in rats, respectively. We proved that the hydrogels with higher degree of crosslinking retarded the degradation. Also, albumin, γ-globulin, and fibrinogen adsorption on P(HEMA-ATEMA-MPC) hydrogel surface was tested, to simulate adsorption in living organism. Rat mesenchymal stromal cell adhesion on hydrogels was improved by the presence of RGDS peptide and laminin on the hydrogels. We found that rat mesenchymal stromal cells proliferated better on laminin-coated hydrogels than on RGDS-modified ones.
650    _2
$a zvířata $7 D000818
650    _2
$a biokompatibilní materiály $x farmakologie $7 D001672
650    12
$a hydrogely $7 D020100
650    12
$a mezenchymální kmenové buňky $7 D059630
650    _2
$a methakryláty $7 D008689
650    _2
$a polyhydroxyethylmethakrylát $7 D011102
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a tkáňové inženýrství $7 D023822
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hlídková, Helena $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Kaberova, Zhansaya $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Proks, Vladimír $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Kučka, Jan $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Patsula, Vitalii $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Vetrik, Miroslav $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Janoušková, Olga $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; Jan Purkyně University in Ústí nad Labem, Faculty of Science, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
700    1_
$a Podhorská, Bohumila $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Pop-Georgievski, Ognen $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Kubinová, Šárka $u Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic; Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
700    1_
$a Horák, Daniel $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
773    0_
$w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 131, č. - (2021), s. 112500
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34857286 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150640 $b ABA008
999    __
$a ok $b bmc $g 1750784 $s 1154270
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 131 $c - $d 112500 $e 20211019 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...