-
Je něco špatně v tomto záznamu ?
In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T2 relaxation times
D. Simicic, V. Rackayova, L. Xin, I. Tkáč, T. Borbath, Z. Starcuk, J. Starcukova, B. Lanz, C. Cudalbu
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 NS076408
NINDS NIH HHS - United States
P41 EB027061
NIBIB NIH HHS - United States
PubMed
34268821
DOI
10.1002/mrm.28910
Knihovny.cz E-zdroje
- MeSH
- krysa rodu rattus MeSH
- makromolekulární látky metabolismus MeSH
- mozek - chemie * MeSH
- mozek * diagnostické zobrazování metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.
Animal Imaging and Technology EPFL Lausanne Switzerland
CIBM Center for Biomedical Imaging Switzerland
Faculty of Science University of Tübingen Tübingen Germany
High Field Magnetic Resonance Max Planck Institute for Biological Cybernetics Tübingen Germany
Institute of Scientific Instruments Czech Academy of Sciences Brno Czech Republic
Laboratory for functional and metabolic imaging EPFL Lausanne Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003342
- 003
- CZ-PrNML
- 005
- 20220127150324.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mrm.28910 $2 doi
- 035 __
- $a (PubMed)34268821
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Simicic, Dunja $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland $u Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
- 245 10
- $a In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T2 relaxation times / $c D. Simicic, V. Rackayova, L. Xin, I. Tkáč, T. Borbath, Z. Starcuk, J. Starcukova, B. Lanz, C. Cudalbu
- 520 9_
- $a PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a mozek $x diagnostické zobrazování $x metabolismus $7 D001921
- 650 12
- $a mozek - chemie $7 D001923
- 650 _2
- $a makromolekulární látky $x metabolismus $7 D046911
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Rackayova, Veronika $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- 700 1_
- $a Xin, Lijing $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- 700 1_
- $a Tkáč, Ivan $u Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- 700 1_
- $a Borbath, Tamas $u High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany $u Faculty of Science, University of Tübingen, Tübingen, Germany
- 700 1_
- $a Starcuk, Zenon $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Starcukova, Jana $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Lanz, Bernard $u Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
- 700 1_
- $a Cudalbu, Cristina $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- 773 0_
- $w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 86, č. 5 (2021), s. 2384-2401
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34268821 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150320 $b ABA008
- 999 __
- $a ok $b bmc $g 1750958 $s 1154491
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 86 $c 5 $d 2384-2401 $e 20210715 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- GRA __
- $a P30 NS076408 $p NINDS NIH HHS $2 United States
- GRA __
- $a P41 EB027061 $p NIBIB NIH HHS $2 United States
- LZP __
- $a Pubmed-20220113