• Je něco špatně v tomto záznamu ?

In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T2 relaxation times

D. Simicic, V. Rackayova, L. Xin, I. Tkáč, T. Borbath, Z. Starcuk, J. Starcukova, B. Lanz, C. Cudalbu

. 2021 ; 86 (5) : 2384-2401. [pub] 20210715

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003342

Grantová podpora
P30 NS076408 NINDS NIH HHS - United States
P41 EB027061 NIBIB NIH HHS - United States

PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003342
003      
CZ-PrNML
005      
20220127150324.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mrm.28910 $2 doi
035    __
$a (PubMed)34268821
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Simicic, Dunja $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland $u Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
245    10
$a In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T2 relaxation times / $c D. Simicic, V. Rackayova, L. Xin, I. Tkáč, T. Borbath, Z. Starcuk, J. Starcukova, B. Lanz, C. Cudalbu
520    9_
$a PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.
650    _2
$a zvířata $7 D000818
650    12
$a mozek $x diagnostické zobrazování $x metabolismus $7 D001921
650    12
$a mozek - chemie $7 D001923
650    _2
$a makromolekulární látky $x metabolismus $7 D046911
650    _2
$a krysa rodu Rattus $7 D051381
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Rackayova, Veronika $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
700    1_
$a Xin, Lijing $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
700    1_
$a Tkáč, Ivan $u Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
700    1_
$a Borbath, Tamas $u High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany $u Faculty of Science, University of Tübingen, Tübingen, Germany
700    1_
$a Starcuk, Zenon $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Starcukova, Jana $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Lanz, Bernard $u Laboratory for functional and metabolic imaging (LIFMET), EPFL, Lausanne, Switzerland
700    1_
$a Cudalbu, Cristina $u CIBM Center for Biomedical Imaging, Switzerland $u Animal Imaging and Technology, EPFL, Lausanne, Switzerland
773    0_
$w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 86, č. 5 (2021), s. 2384-2401
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34268821 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150320 $b ABA008
999    __
$a ok $b bmc $g 1750958 $s 1154491
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 86 $c 5 $d 2384-2401 $e 20210715 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
GRA    __
$a P30 NS076408 $p NINDS NIH HHS $2 United States
GRA    __
$a P41 EB027061 $p NIBIB NIH HHS $2 United States
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...