Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects

M. Hreusova, V. Brabec, O. Novakova

. 2021 ; 22 (19) : . [pub] 20211007

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003483

Grantová podpora
21-27514S Grantová Agentura České Republiky

DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003483
003      
CZ-PrNML
005      
20220127150202.0
007      
ta
008      
220113s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms221910838 $2 doi
035    __
$a (PubMed)34639179
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Hreusova, Monika $u Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic
245    10
$a Processing and Bypass of a Site-Specific DNA Adduct of the Cytotoxic Platinum-Acridinylthiourea Conjugate by Polymerases Involved in DNA Repair: Biochemical and Thermodynamic Aspects / $c M. Hreusova, V. Brabec, O. Novakova
520    9_
$a DNA-dependent DNA and RNA polymerases are important modulators of biological functions such as replication, transcription, recombination, or repair. In this work performed in cell-free media, we studied the ability of selected DNA polymerases to overcome a monofunctional adduct of the cytotoxic/antitumor platinum-acridinylthiourea conjugate [PtCl(en)(L)](NO3)2 (en = ethane-1,2-diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) (ACR) in its favored 5'-CG sequence. We focused on how a single site-specific ACR adduct with intercalation potency affects the processivity and fidelity of DNA-dependent DNA polymerases involved in translesion synthesis (TLS) and repair. The ability of the G(N7) hybrid ACR adduct formed in the 5'-TCGT sequence of a 24-mer DNA template to inhibit the synthesis of a complementary DNA strand by the exonuclease-deficient Klenow fragment of DNA polymerase I (KFexo-) and human polymerases eta, kappa, and iota was supplemented by thermodynamic analysis of the polymerization process. Thermodynamic parameters of a simulated translesion synthesis across the ACR adduct were obtained by using microscale thermophoresis (MST). Our results show a strong inhibitory effect of an ACR adduct on enzymatic TLS: there was only small synthesis of a full-length product (less than 10%) except polymerase eta (~20%). Polymerase eta was able to most efficiently bypass the ACR hybrid adduct. Incorporation of a correct dCMP opposite the modified G residue is preferred by all the four polymerases tested. On the other hand, the frequency of misinsertions increased. The relative efficiency of misinsertions is higher than that of matched cytidine monophosphate but still lower than for the nonmodified control duplex. Thermodynamic inspection of the simulated TLS revealed a significant stabilization of successively extended primer/template duplexes containing an ACR adduct. Moreover, no significant decrease of dissociation enthalpy change behind the position of the modification can contribute to the enzymatic TLS observed with the DNA-dependent, repair-involved polymerases. This TLS could lead to a higher tolerance of cancer cells to the ACR conjugate compared to its enhanced analog, where thiourea is replaced by an amidine group: [PtCl(en)(L)](NO3)2 (complex AMD, en = ethane-1,2-diamine, L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine).
650    _2
$a adukty DNA $x chemie $7 D018736
650    12
$a poškození DNA $7 D004249
650    12
$a oprava DNA $7 D004260
650    _2
$a replikace DNA $7 D004261
650    _2
$a DNA-dependentní DNA-polymerasy $x metabolismus $7 D004259
650    _2
$a lidé $7 D006801
650    _2
$a interkalátory $x chemie $7 D007364
650    _2
$a organoplatinové sloučeniny $x chemie $7 D009944
650    _2
$a močovina $x analogy a deriváty $x chemie $7 D014508
655    _2
$a časopisecké články $7 D016428
700    1_
$a Brabec, Viktor $u Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic $u Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ 78371 Olomouc, Czech Republic
700    1_
$a Novakova, Olga $u Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ 61265 Brno, Czech Republic
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 19 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34639179 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150158 $b ABA008
999    __
$a ok $b bmc $g 1751054 $s 1154632
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 22 $c 19 $e 20211007 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a 21-27514S $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...