-
Something wrong with this record ?
Precursors of Viral Proteases as Distinct Drug Targets
T. Majerová, P. Novotný
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
NLK
Directory of Open Access Journals
from 2009
Free Medical Journals
from 2009
PubMed Central
from 2009
Europe PubMed Central
from 2009
ProQuest Central
from 2009-01-01
Open Access Digital Library
from 2009-01-01
Open Access Digital Library
from 2009-01-01
Health & Medicine (ProQuest)
from 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2009
PubMed
34696411
DOI
10.3390/v13101981
Knihovny.cz E-resources
- MeSH
- Antiviral Agents pharmacology MeSH
- Flavivirus drug effects metabolism MeSH
- Herpesviridae drug effects metabolism MeSH
- HIV-1 drug effects MeSH
- Viral Protease Inhibitors pharmacology MeSH
- Humans MeSH
- Adenoviruses, Human drug effects metabolism MeSH
- SARS-CoV-2 drug effects metabolism MeSH
- Virus Diseases drug therapy MeSH
- Viral Proteases biosynthesis metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003516
- 003
- CZ-PrNML
- 005
- 20220127150139.0
- 007
- ta
- 008
- 220113s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/v13101981 $2 doi
- 035 __
- $a (PubMed)34696411
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Majerová, Taťána $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- 245 10
- $a Precursors of Viral Proteases as Distinct Drug Targets / $c T. Majerová, P. Novotný
- 520 9_
- $a Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
- 650 _2
- $a lidské adenoviry $x účinky léků $x metabolismus $7 D000260
- 650 _2
- $a antivirové látky $x farmakologie $7 D000998
- 650 _2
- $a Flavivirus $x účinky léků $x metabolismus $7 D005416
- 650 _2
- $a HIV-1 $x účinky léků $7 D015497
- 650 _2
- $a Herpesviridae $x účinky léků $x metabolismus $7 D006564
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a SARS-CoV-2 $x účinky léků $x metabolismus $7 D000086402
- 650 _2
- $a inhibitory virových proteáz $x farmakologie $7 D000084762
- 650 _2
- $a virové proteasy $x biosyntéza $x metabolismus $7 D000085242
- 650 _2
- $a virové nemoci $x farmakoterapie $7 D014777
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Novotný, Pavel $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic $u Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
- 773 0_
- $w MED00177099 $t Viruses $x 1999-4915 $g Roč. 13, č. 10 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34696411 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150136 $b ABA008
- 999 __
- $a ok $b bmc $g 1751078 $s 1154665
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 10 $e 20211002 $i 1999-4915 $m Viruses $n Viruses $x MED00177099
- GRA __
- $a CZ.02.1.01/0.0/0.0/16_019/0000729 $p European Regional Development Fund
- LZP __
- $a Pubmed-20220113