-
Je něco špatně v tomto záznamu ?
Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools
V. Mojr, M. Roghanian, H. Tamman, DD. Do Pham, M. Petrová, R. Pohl, H. Takada, K. Van Nerom, H. Ainelo, J. Caballero-Montes, S. Jimmy, A. Garcia-Pino, V. Hauryliuk, D. Rejman
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- adeninnukleotidy chemická syntéza metabolismus MeSH
- alosterické místo MeSH
- Bacillus subtilis MeSH
- bakteriální proteiny metabolismus MeSH
- deoxyribonukleotidy MeSH
- Escherichia coli MeSH
- konformace proteinů MeSH
- ligasy metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
Department of Clinical Microbiology Rigshospitalet 2200 Copenhagen Denmark
Department of Experimental Medical Science Lund University 221 00 Lund Sweden
Faculty of Life Sciences Kyoto Sangyo University Kamigamo Motoyama Kita ku Kyoto 603 8555 Japan
Laboratory for Molecular Infection Medicine Sweden Umeå University 901 87 Umeå Sweden
University of Tartu Institute of Technology 50411 Tartu Estonia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003705
- 003
- CZ-PrNML
- 005
- 20220127145946.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acschembio.1c00398 $2 doi
- 035 __
- $a (PubMed)34477366
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mojr, Viktor $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- 245 10
- $a Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools / $c V. Mojr, M. Roghanian, H. Tamman, DD. Do Pham, M. Petrová, R. Pohl, H. Takada, K. Van Nerom, H. Ainelo, J. Caballero-Montes, S. Jimmy, A. Garcia-Pino, V. Hauryliuk, D. Rejman
- 520 9_
- $a While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
- 650 _2
- $a adeninnukleotidy $x chemická syntéza $x metabolismus $7 D000227
- 650 _2
- $a alosterické místo $7 D000495
- 650 _2
- $a Bacillus subtilis $7 D001412
- 650 _2
- $a bakteriální proteiny $x metabolismus $7 D001426
- 650 _2
- $a deoxyribonukleotidy $7 D003854
- 650 _2
- $a Escherichia coli $7 D004926
- 650 _2
- $a regulace genové exprese u bakterií $x účinky léků $7 D015964
- 650 _2
- $a ligasy $x metabolismus $7 D008025
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a pyrofosfatasy $x metabolismus $7 D011755
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Roghanian, Mohammad $u Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden $u Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
- 700 1_
- $a Tamman, Hedvig $u Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium $u WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- 700 1_
- $a Do Pham, Duy Dinh $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- 700 1_
- $a Petrová, Magdalena $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- 700 1_
- $a Pohl, Radek $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- 700 1_
- $a Takada, Hiraku $u Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden $u Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- 700 1_
- $a Van Nerom, Katleen $u Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium $u WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- 700 1_
- $a Ainelo, Hanna $u Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium $u WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- 700 1_
- $a Caballero-Montes, Julien $u Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium $u WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- 700 1_
- $a Jimmy, Steffi $u Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden $u Deutsches Elektronen-Synchrotron DESY, Centre for Structural Systems Biology (CSSB), Notkestr. 85, 22607 Hamburg, Germany
- 700 1_
- $a Garcia-Pino, Abel $u Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium $u WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- 700 1_
- $a Hauryliuk, Vasili $u Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden $u University of Tartu, Institute of Technology, 50411 Tartu, Estonia $u Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- 700 1_
- $a Rejman, Dominik $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- 773 0_
- $w MED00179502 $t ACS chemical biology $x 1554-8937 $g Roč. 16, č. 9 (2021), s. 1680-1691
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34477366 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145942 $b ABA008
- 999 __
- $a ok $b bmc $g 1751227 $s 1154854
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 16 $c 9 $d 1680-1691 $e 20210903 $i 1554-8937 $m ACS chemical biology $n ACS Chem Biol $x MED00179502
- LZP __
- $a Pubmed-20220113