Chemical sensor platform for non-invasive monitoring of activity and dehydration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25594591
PubMed Central
PMC4327088
DOI
10.3390/s150101479
PII: s150101479
Knihovny.cz E-zdroje
- MeSH
- bezdrátová technologie přístrojové vybavení MeSH
- dehydratace diagnóza MeSH
- design vybavení MeSH
- difrakce rentgenového záření MeSH
- elektrody MeSH
- kalibrace MeSH
- lidé MeSH
- monitorování fyziologických funkcí přístrojové vybavení MeSH
- nanostruktury ultrastruktura MeSH
- počítačové komunikační sítě přístrojové vybavení MeSH
- titan chemie MeSH
- vlhkost MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- titan MeSH
- titanium dioxide MeSH Prohlížeč
A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.
Zobrazit více v PubMed
Morris D., Coyle S., Wu Y.Z., Lau K.T., Wallace G., Diamond D. Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 2009;139:231–236.
Benjamin H., Bhansali S., Hoath S.B., Pickens W.L., Smallwood R. A planar micro-sensor for bio-impedance measurements. Sens. Actuators B Chem. 2005;111:430–435.
Hiyama T.Y., Matsuda S., Fujikawa A., Matsumoto M., Watanabe E., Kajiwara H., Niimura F., Noda M. Autoimmunity to the Sodium-Level Sensor in the Brain Causes Essential Hypernatremia. Neuron. 2010;66:508–522. PubMed
Nicolle S., Palierne J.F. Dehydration effect on the mechanical behaviour of biological soft tissues: Observations on kidney tissues. J. Mech. Behav. Biomed. 2010;3:630–635. PubMed
Janik P., Janik M.A., Wrobel Z. Micro-condensation sensor for monitoring respiratory rate and breath strength. Sens. Actuators A Phys. 2012;185:160–167.
Stewart R., Reed J., Zhong J., Morton K., Porter T.L. Human hydration level monitoring using embedded piezoresistive microcantilever sensors. Med. Eng. Phys. 2007;29:1084–1088. PubMed
Kim D.J., Prabhakaran B. Motion fault detection and isolation in Body Sensor Networks. Pervasive Mob. Comput. 2011;7:727–745.
Olivares A., Olivares G., Mula F., Gorriz J.M., Ramirez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. J. Syst. Archit. 2011;57:905–915.
Montain S.J., Cheuvront S.N., Lukaski H.C. Sweat mineral-element responses during 7 h of exercise-heat stress. Int. J. Sport Nutr. Exerc. 2007;17:574–582. PubMed
Vivanti A., Harvey K., Ash S., Battistutta D. Clinical assessment of dehydration in older people admitted to hospital: What are the strongest indicators? Arch. Gerontol. Geriatr. 2008;47:340–355. PubMed
Armstrong L.E., Soto J.A.H., Hacker F.T., Casa D.J., Kavouras S.A., Maresh C.M. Urinary indices during dehydration, exercise, and rehydration. Int. J. Sport Nutr. 1998;8:345–355. PubMed
Putnam D.F., Company-West M.D.A., Center L.R., Aeronautics U.S.N., Administration S. Composition and Concentrative Properties of Human Urine. National Aeronautics and Space Administration; Washington, DC, USA: 1971. p. 107.
Solovei D., Zak J., Sedlacek J., Hubalek J. The development of portable system for unobtrusive perspiration monitoring. Procedia Eng. 2012;47:200–203.
Hedayati S.S., Minhajuddin A.T., Ijaz A., Moe O.W., Elsayed E.F., Reilly R.F., Huang C.L. Association of Urinary Sodium/Potassium Ratio with Blood Pressure: Sex and Racial Differences. Clin. J. Am. Soc. Nephrol. 2012;7:315–322. PubMed PMC
Comini E., Baratto C., Faglia G., Ferroni M., Vomiero A., Sberveglieri G. Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 2009;54:1–67.
Moon H.G., Shim Y.S., Jang H.W., Kim J.S., Choi K.J., Kang C.Y., Choi J.W., Park H.H., Yoon S.J. Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres. Sens. Actuators B Chem. 2010;149:116–121.
Calavia R., Mozalev A., Vazquez R., Gracia I., Cane C., Ionescu R., Llobet E. Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sens. Actuators B Chem. 2010;149:352–361.
Zhang R.H., Zhang X.T., Hu S.M. High temperature and pressure chemical sensors based on Zr/ZrO2 electrode prepared by nanostructured ZrO2 film at Zr wire. Sens. Actuators B Chem. 2010;149:143–154.
Liu S.Q., Dai Z.H., Chen H.Y., Ju H.X. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens. Bioelectron. 2004;19:963–969. PubMed
Niskanen A.J., Varpula A., Utriainen M., Natarajan G., Cameron D.C., Novikov S., Airaksinen V.M., Sinkkonen J., Franssila S. Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens. Actuators B Chem. 2010;148:227–232.
Aoki H., Azuma Y., Asaka T., Higuchi M., Asaga K., Katayama K. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5. Ceram. Int. 2008;34:819–822.
Kurioka N., Watanabe D., Haneda M., Shimanouchi T., Mizushima T., Kakuta N., Ueno A., Hanaoka T., Sugi Y. Preparation of Niobium Oxide-Films as a Humidity Sensor. Catal. Today. 1993;16:495–501.
Gonzalo-Ruiz J., Mas R., de Haro C., Cabruja E., Camero R., Alonso-Lomillo M.A., Munoz F.J. Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens. Bioelectron. 2009;24:1788–1791. PubMed
Sekiguchi N., Komeda T., Funakubo H., Chabicovsky R., Nicolics J., Stangl G. Microsensor for the measurement of water content in the human skin. Sens. Actuators B Chem. 2001;78:326–330.
Miyoshi Y., Miyajima K., Saito H., Kudo H., Takeuchi T., Karube I., Mitsubayashi K. Flexible humidity sensor in a sandwich configuration with a hydrophilic porous membrane. Sens. Actuators B Chem. 2009;142:28–32.
Wu R.J., Sun Y.L., Lin C.C., Chen H.W., Chavali M. Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B Chem. 2006;115:198–204.
Su P.G., Sun Y.L., Lin C.C. Novel low humidity sensor made of TiO2 nanowires/ (2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance. Talanta. 2006;69:946–951. PubMed
Zhang H.N., Li Z.Y., Liu L., Wang C., Wei Y., MacDiarmid A.G. Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors. Talanta. 2009;79:953–958. PubMed
Qi Q., Feng Y.L., Zhang T., Zheng X.J., Lu G.Y. Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers. Sens. Actuators B Chem. 2009;139:611–617.
Biju K.P., Jain M.K. Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. Thin Solid Films. 2008;516:2175–2180.
Su P.G., Huang L.N. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sens. Actuators B Chem. 2007;123:501–507.
Su P.G., Chang Y.P. Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films. Sens. Actuators B Chem. 2008;129:915–920.
Su P.G., Wang C.P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly [3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials. Sens. Actuators B Chem. 2008;129:538–543.
Kim D.U., Gong M.S. Thick films of copper-titanate resistive humidity sensor. Sens. Actuators B Chem. 2005;110:321–326.
Wang Q., Pan Y.Z., Huang S.S., Ren S.T., Li P., Li J.J. Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology. 2011;22 doi: 10.1088/0957-4484/22/2/025501. PubMed DOI
Yadav B.C., Srivastava A.K., Sharma P. Resistance Based Humidity Sensing Properties of TiO2. Sens. Transducers. 2007;81:1348–1353.
Raji P., Binitha H.S., Balachandra Kumar K. Synthesis and Humidity Sensing Properties of Sn-Doped Nano-TiO2. J. Nanotechnol. 2011;2011 doi: 10.1155/2011/569036. DOI
Kupsta M.R., Taschuk M.T., Brett M.J., Sit J.C. Reactive Ion Etching of Columnar Nanostructured TiO2 Thin Films for Modified Relative Humidity Sensor Response Time. IEEE Sens. J. 2009;9:1979–1986.
Steele J.J., Taschuk M.T., Brett M.J. Response time of nanostructured relative humidity sensors. Sens. Actuators B Chem. 2009;140:610–615.
Oppliger R.A., Bartok C. Hydration testing of athletes. Sports Med. 2002;32:959–971. PubMed
Oberg P.A., Hammarlund K., Nilsson G.E., Nilsson L., Sedin G. Measurement of Water Transport through the Skin. Upsala J. Med. Sci. 1981;86:23–26. PubMed
Nonato L.B., Lund C.H. Transepidermal water loss in the intensive care nursery: Measuring techniques and research recommendations. Newborn Infant Nurs. Rev. 2001;1:11–20.
Tatarenko N.I., Mozalev A.M. Geometry and element composition of a nanoscale field emission array formed by self-organization in porous anodic aluminum oxide. Solid State Electron. 2001;45:1009–1016.
Lu T.H., Chen C.C. Uncertainty evaluation of humidity sensors calibrated by saturated salt solutions. Measurement. 2007;40:591–599.
Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003;48:53–229.
Zhang Z., Fenter P., Cheng L., Sturchio N.C., Bedzyk M.J., Predota M., Bandura A., Kubicki J.D., Lvov S.N., Cummings P.T., et al. Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties. Langmuir. 2004;20:4954–4969. PubMed