-
Je něco špatně v tomto záznamu ?
Molecular Interactions Driving Intermediate Filament Assembly
PJ. Vermeire, G. Stalmans, AV. Lilina, J. Fiala, P. Novak, H. Herrmann, SV. Strelkov
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
731077
Horizon 2020
NLK
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2012-03-01
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2012
PubMed
34572105
DOI
10.3390/cells10092457
Knihovny.cz E-zdroje
- MeSH
- cytoskelet chemie metabolismus MeSH
- fyziologie buňky * MeSH
- intermediární filamenta chemie metabolismus MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
Department of Biochemistry Charles University 12800 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences 14220 Prague Czech Republic
Laboratory for Biocrystallography KU Leuven 3000 Leuven Belgium
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003706
- 003
- CZ-PrNML
- 005
- 20220127145945.0
- 007
- ta
- 008
- 220113s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/cells10092457 $2 doi
- 035 __
- $a (PubMed)34572105
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Vermeire, Pieter-Jan $u Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium
- 245 10
- $a Molecular Interactions Driving Intermediate Filament Assembly / $c PJ. Vermeire, G. Stalmans, AV. Lilina, J. Fiala, P. Novak, H. Herrmann, SV. Strelkov
- 520 9_
- $a Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a fyziologie buňky $7 D002468
- 650 _2
- $a cytoskelet $x chemie $x metabolismus $7 D003599
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a intermediární filamenta $x chemie $x metabolismus $7 D007382
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Stalmans, Giel $u Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium
- 700 1_
- $a Lilina, Anastasia V $u Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium
- 700 1_
- $a Fiala, Jan $u Department of Biochemistry, Charles University, 12800 Prague, Czech Republic $u Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- 700 1_
- $a Novak, Petr $u Department of Biochemistry, Charles University, 12800 Prague, Czech Republic $u Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- 700 1_
- $a Herrmann, Harald $u Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- 700 1_
- $a Strelkov, Sergei V $u Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium
- 773 0_
- $w MED00194911 $t Cells $x 2073-4409 $g Roč. 10, č. 9 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34572105 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145942 $b ABA008
- 999 __
- $a ok $b bmc $g 1751228 $s 1154855
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 10 $c 9 $e 20210917 $i 2073-4409 $m Cells $n Cells $x MED00194911
- GRA __
- $a 731077 $p Horizon 2020
- LZP __
- $a Pubmed-20220113