• Je něco špatně v tomto záznamu ?

An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition

MM. Taylor, D. Contreras, A. Destexhe, Y. Frégnac, J. Antolik

. 2021 ; 41 (37) : 7797-7812. [pub] 20210728

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003730

Grantová podpora
R01 EY027205 NEI NIH HHS - United States
T32 EY007035 NEI NIH HHS - United States

The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003730
003      
CZ-PrNML
005      
20220127145927.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1523/JNEUROSCI.0928-20.2021 $2 doi
035    __
$a (PubMed)34321313
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Taylor, M Morgan $u Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
245    13
$a An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition / $c MM. Taylor, D. Contreras, A. Destexhe, Y. Frégnac, J. Antolik
520    9_
$a The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a kočky $7 D002415
650    12
$a modely neurologické $7 D008959
650    _2
$a nervový útlum $x fyziologie $7 D009433
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a synapse $x fyziologie $7 D013569
650    _2
$a nervový přenos $x fyziologie $7 D009435
650    _2
$a zrakové korové centrum $x fyziologie $7 D014793
650    _2
$a zrakové dráhy $x fyziologie $7 D014795
650    _2
$a zraková percepce $x fyziologie $7 D014796
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Contreras, Diego $u Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
700    1_
$a Destexhe, Alain $u Institute of Neuroscience (Paris-Saclay Institute of Neuroscience, Unit of Neuroscience, Information, and Complexity), Paris-Saclay University, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
700    1_
$a Frégnac, Yves $u Institute of Neuroscience (Paris-Saclay Institute of Neuroscience, Unit of Neuroscience, Information, and Complexity), Paris-Saclay University, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
700    1_
$a Antolik, Jan $u Faculty of Mathematics and Physics, Charles University, 11800 Prague, Czech Republic antolik@ksvi.mff.cuni.cz
773    0_
$w MED00002840 $t The Journal of neuroscience : the official journal of the Society for Neuroscience $x 1529-2401 $g Roč. 41, č. 37 (2021), s. 7797-7812
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34321313 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145923 $b ABA008
999    __
$a ok $b bmc $g 1751247 $s 1154879
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 41 $c 37 $d 7797-7812 $e 20210728 $i 1529-2401 $m The Journal of neuroscience $n J Neurosci $x MED00002840
GRA    __
$a R01 EY027205 $p NEI NIH HHS $2 United States
GRA    __
$a T32 EY007035 $p NEI NIH HHS $2 United States
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...