• Je něco špatně v tomto záznamu ?

Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions

O. Dlouhý, V. Karlický, R. Arshad, O. Zsiros, I. Domonkos, I. Kurasová, AF. Wacha, T. Morosinotto, A. Bóta, R. Kouřil, V. Špunda, G. Garab

. 2021 ; 10 (9) : . [pub] 20210909

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003749

Grantová podpora
19-13637S Grantová Agentura České Republiky
K 128679 Hungarian Scientific Research Fund
GINOP-2.3.2-15-2016-00058 National Research Development and Innovation Office of Hungary
CZ.02.1.01/0.0/0.0/16_019/0000797 SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
CZ.02.1.01/0.0/0.0/ 16_019/0000827 European Regional Development Fund
07359/2019/RRC Silesian Region
SGS02/PřF/2021 Ostravská Univerzita v Ostravě
LM2015043 Ministry of Education, Youth and Science
LM2018123 Ministry of Education, Youth and Science

In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003749
003      
CZ-PrNML
005      
20220127145916.0
007      
ta
008      
220113s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/cells10092363 $2 doi
035    __
$a (PubMed)34572012
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Dlouhý, Ondřej $u Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
245    10
$a Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions / $c O. Dlouhý, V. Karlický, R. Arshad, O. Zsiros, I. Domonkos, I. Kurasová, AF. Wacha, T. Morosinotto, A. Bóta, R. Kouřil, V. Špunda, G. Garab
520    9_
$a In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
650    _2
$a cirkulární dichroismus $x metody $7 D002942
650    _2
$a lipidy $x genetika $7 D008055
650    _2
$a magnetická rezonanční spektroskopie $x metody $7 D009682
650    _2
$a elektronová mikroskopie $x metody $7 D008854
650    _2
$a fotosyntéza $x genetika $7 D010788
650    _2
$a tylakoidy $x genetika $7 D020524
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Karlický, Václav $u Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic $u Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
700    1_
$a Arshad, Rameez $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic $u Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
700    1_
$a Zsiros, Ottó $u Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
700    1_
$a Domonkos, Ildikó $u Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
700    1_
$a Kurasová, Irena $u Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic $u Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
700    1_
$a Wacha, András F $u Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary
700    1_
$a Morosinotto, Tomas $u Department of Biology, University of Padova, 35131 Padova, Italy
700    1_
$a Bóta, Attila $u Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary
700    1_
$a Kouřil, Roman $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
700    1_
$a Špunda, Vladimír $u Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic $u Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
700    1_
$a Garab, Győző $u Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic $u Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
773    0_
$w MED00194911 $t Cells $x 2073-4409 $g Roč. 10, č. 9 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34572012 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145912 $b ABA008
999    __
$a ok $b bmc $g 1751259 $s 1154898
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 10 $c 9 $e 20210909 $i 2073-4409 $m Cells $n Cells $x MED00194911
GRA    __
$a 19-13637S $p Grantová Agentura České Republiky
GRA    __
$a K 128679 $p Hungarian Scientific Research Fund
GRA    __
$a GINOP-2.3.2-15-2016-00058 $p National Research Development and Innovation Office of Hungary
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000797 $p SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
GRA    __
$a CZ.02.1.01/0.0/0.0/ 16_019/0000827 $p European Regional Development Fund
GRA    __
$a 07359/2019/RRC $p Silesian Region
GRA    __
$a SGS02/PřF/2021 $p Ostravská Univerzita v Ostravě
GRA    __
$a LM2015043 $p Ministry of Education, Youth and Science
GRA    __
$a LM2018123 $p Ministry of Education, Youth and Science
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...