Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Transcriptomic markers of fungal growth, respiration and carbon-use efficiency

FA. Hasby, F. Barbi, S. Manzoni, BD. Lindahl

. 2021 ; 368 (15) : . [pub] 20210819

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 2015-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2015-01-01 to 1 year ago
Public Health Database (ProQuest) from 2015-01-01 to 1 year ago

Fungal metabolic carbon acquisition and its subsequent partitioning between biomass production and respiration, i.e. the carbon-use efficiency (CUE), are central parameters in biogeochemical modeling. However, current available techniques for estimating these parameters are all associated with practical and theoretical shortcomings, making assessments unreliable. Gene expression analyses hold the prospect of phenotype prediction by indirect means, providing new opportunities to obtain information about metabolic priorities. We cultured four different fungal isolates (Chalara longipes, Laccaria bicolor, Serpula lacrymans and Trichoderma harzianum) in liquid media with contrasting nitrogen availability and measured growth rates and respiration to calculate CUE. By relating gene expression markers to measured carbon fluxes, we identified genes coding for 1,3-β-glucan synthase and 2-oxoglutarate dehydrogenase as suitable markers for growth and respiration, respectively, capturing both intraspecific variation as well as within-strain variation dependent on growth medium. A transcript index based on these markers correlated significantly with differences in CUE between the fungal isolates. Our study paves the way for the use of these markers to assess differences in growth, respiration and CUE in natural fungal communities, using metatranscriptomic or the RT-qPCR approach.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003913
003      
CZ-PrNML
005      
20220127145728.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/femsle/fnab100 $2 doi
035    __
$a (PubMed)34338746
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hasby, Fahri A $u Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
245    10
$a Transcriptomic markers of fungal growth, respiration and carbon-use efficiency / $c FA. Hasby, F. Barbi, S. Manzoni, BD. Lindahl
520    9_
$a Fungal metabolic carbon acquisition and its subsequent partitioning between biomass production and respiration, i.e. the carbon-use efficiency (CUE), are central parameters in biogeochemical modeling. However, current available techniques for estimating these parameters are all associated with practical and theoretical shortcomings, making assessments unreliable. Gene expression analyses hold the prospect of phenotype prediction by indirect means, providing new opportunities to obtain information about metabolic priorities. We cultured four different fungal isolates (Chalara longipes, Laccaria bicolor, Serpula lacrymans and Trichoderma harzianum) in liquid media with contrasting nitrogen availability and measured growth rates and respiration to calculate CUE. By relating gene expression markers to measured carbon fluxes, we identified genes coding for 1,3-β-glucan synthase and 2-oxoglutarate dehydrogenase as suitable markers for growth and respiration, respectively, capturing both intraspecific variation as well as within-strain variation dependent on growth medium. A transcript index based on these markers correlated significantly with differences in CUE between the fungal isolates. Our study paves the way for the use of these markers to assess differences in growth, respiration and CUE in natural fungal communities, using metatranscriptomic or the RT-qPCR approach.
650    _2
$a Ascomycota $x genetika $x metabolismus $7 D001203
650    _2
$a Basidiomycota $x genetika $7 D001487
650    12
$a biologické markery $x analýza $7 D015415
650    12
$a uhlík $x metabolismus $7 D002244
650    12
$a fungální proteiny $x genetika $x metabolismus $7 D005656
650    12
$a houby $x genetika $x metabolismus $7 D005658
650    _2
$a Hypocreales $x genetika $x metabolismus $7 D006999
650    _2
$a Laccaria $x genetika $x metabolismus $7 D055399
650    12
$a transkriptom $7 D059467
650    _2
$a Trichoderma $x genetika $x metabolismus $7 D014242
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Barbi, Florian $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
700    1_
$a Manzoni, Stefano $u Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius väg 8, Stockholm, Sweden
700    1_
$a Lindahl, Björn D $u Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
773    0_
$w MED00001792 $t FEMS microbiology letters $x 1574-6968 $g Roč. 368, č. 15 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34338746 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145724 $b ABA008
999    __
$a ok $b bmc $g 1751392 $s 1155062
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 368 $c 15 $e 20210819 $i 1574-6968 $m FEMS microbiology letters $n FEMS Microbiol Lett $x MED00001792
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...