-
Je něco špatně v tomto záznamu ?
pyTFM: A tool for traction force and monolayer stress microscopy
A. Bauer, M. Prechová, L. Fischer, I. Thievessen, M. Gregor, B. Fabry
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV17-31538A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-06-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- algoritmy MeSH
- fyzikální jevy MeSH
- mikroskopie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004204
- 003
- CZ-PrNML
- 005
- 20220127145435.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1008364 $2 doi
- 035 __
- $a (PubMed)34153027
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bauer, Andreas $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- 245 10
- $a pyTFM: A tool for traction force and monolayer stress microscopy / $c A. Bauer, M. Prechová, L. Fischer, I. Thievessen, M. Gregor, B. Fabry
- 520 9_
- $a Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mikroskopie $x metody $7 D008853
- 650 _2
- $a fyzikální jevy $7 D055585
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Prechová, Magdalena $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Fischer, Lena $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- 700 1_
- $a Thievessen, Ingo $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- 700 1_
- $a Gregor, Martin $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Fabry, Ben $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 17, č. 6 (2021), s. e1008364
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34153027 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145432 $b ABA008
- 999 __
- $a ok $b bmc $g 1751609 $s 1155353
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 17 $c 6 $d e1008364 $e 20210621 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- GRA __
- $a NV17-31538A $p MZ0
- LZP __
- $a Pubmed-20220113