Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

pyTFM: A tool for traction force and monolayer stress microscopy

A. Bauer, M. Prechová, L. Fischer, I. Thievessen, M. Gregor, B. Fabry

. 2021 ; 17 (6) : e1008364. [pub] 20210621

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004204

Grantová podpora
NV17-31538A MZ0 CEP - Centrální evidence projektů

Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004204
003      
CZ-PrNML
005      
20220127145435.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pcbi.1008364 $2 doi
035    __
$a (PubMed)34153027
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bauer, Andreas $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
245    10
$a pyTFM: A tool for traction force and monolayer stress microscopy / $c A. Bauer, M. Prechová, L. Fischer, I. Thievessen, M. Gregor, B. Fabry
520    9_
$a Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.
650    _2
$a algoritmy $7 D000465
650    _2
$a mikroskopie $x metody $7 D008853
650    _2
$a fyzikální jevy $7 D055585
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Prechová, Magdalena $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Fischer, Lena $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
700    1_
$a Thievessen, Ingo $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
700    1_
$a Gregor, Martin $u Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Fabry, Ben $u Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
773    0_
$w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 17, č. 6 (2021), s. e1008364
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34153027 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145432 $b ABA008
999    __
$a ok $b bmc $g 1751609 $s 1155353
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 17 $c 6 $d e1008364 $e 20210621 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
GRA    __
$a NV17-31538A $p MZ0
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...