• Something wrong with this record ?

Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts

E. Filova, M. Steinerova, M. Travnickova, J. Knitlova, J. Musilkova, A. Eckhardt, D. Hadraba, R. Matejka, S. Prazak, J. Stepanovska, J. Kucerova, T. Riedel, E. Brynda, A. Lodererova, E. Honsova, J. Pirk, M. Konarik, L. Bacakova

. 2021 ; 16 (2) : 025024. [pub] 20210225

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004604
003      
CZ-PrNML
005      
20220228092401.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1748-605X/abbdbd $2 doi
035    __
$a (PubMed)33629665
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Filova, Elena $u Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
245    10
$a Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts / $c E. Filova, M. Steinerova, M. Travnickova, J. Knitlova, J. Musilkova, A. Eckhardt, D. Hadraba, R. Matejka, S. Prazak, J. Stepanovska, J. Kucerova, T. Riedel, E. Brynda, A. Lodererova, E. Honsova, J. Pirk, M. Konarik, L. Bacakova
520    9_
$a An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.
650    _2
$a tuková tkáň $x cytologie $7 D000273
650    _2
$a zvířata $7 D000818
650    _2
$a bioprotézy $7 D001705
650    _2
$a proliferace buněk $7 D049109
650    _2
$a kolagen $x chemie $7 D003094
650    _7
$a decelularizovaná extracelulární matrix $x chemie $7 D000091083 $2 czmesh
650    _2
$a endoteliální buňky $x cytologie $7 D042783
650    _2
$a extracelulární matrix $x metabolismus $7 D005109
650    _2
$a fibrinogen $x chemie $7 D005340
650    _2
$a fibronektiny $x chemie $7 D005353
650    12
$a srdeční chlopně $7 D006351
650    _2
$a endoteliální buňky pupečníkové žíly (lidské) $7 D061307
650    _2
$a lidé $7 D006801
650    _2
$a techniky in vitro $7 D066298
650    _2
$a lipektomie $7 D015187
650    _2
$a fluorescenční mikroskopie $7 D008856
650    _2
$a perikard $x metabolismus $x patologie $7 D010496
650    _2
$a kmenové buňky $7 D013234
650    _2
$a prasata $7 D013552
650    _2
$a trombin $x chemie $7 D013917
650    _2
$a tkáňové inženýrství $x metody $7 D023822
650    12
$a tkáňové podpůrné struktury $x chemie $7 D054457
650    _2
$a vaskulární endoteliální růstový faktor A $x metabolismus $7 D042461
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Steinerova, Marie
700    1_
$a Travnickova, Martina
700    1_
$a Knitlova, Jarmila
700    1_
$a Musilkova, Jana
700    1_
$a Eckhardt, Adam
700    1_
$a Hadraba, Daniel
700    1_
$a Matejka, Roman
700    1_
$a Prazak, Simon
700    1_
$a Stepanovska, Jana
700    1_
$a Kucerova, Johanka
700    1_
$a Riedel, Tomáš
700    1_
$a Brynda, Eduard
700    1_
$a Lodererova, Alena
700    1_
$a Honsova, Eva
700    1_
$a Pirk, Jan
700    1_
$a Konarik, Miroslav
700    1_
$a Bacakova, Lucie
773    0_
$w MED00180190 $t Biomedical materials (Bristol, England) $x 1748-605X $g Roč. 16, č. 2 (2021), s. 025024
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33629665 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220228092359 $b ABA008
999    __
$a ok $b bmc $g 1751918 $s 1155753
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 16 $c 2 $d 025024 $e 20210225 $i 1748-605X $m Biomedical materials $n Biomed Mater $x MED00180190
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...