-
Something wrong with this record ?
A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato
J. Mi, JG. Vallarino, I. Petřík, O. Novák, SM. Correa, M. Chodasiewicz, M. Havaux, M. Rodriguez-Concepcion, S. Al-Babili, AR. Fernie, A. Skirycz, JC. Moreno
Language English Country Belgium
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Biomass MeSH
- Biosynthetic Pathways genetics MeSH
- Stress, Physiological MeSH
- Carotenoids metabolism MeSH
- Solanum lycopersicum * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
Aix Marseille University CEA CNRS UMR7265 BIAM CEA Cadarache F 13108 Saint Paul lez Durance France
Boyce Thompson Institute Cornell University Ithaca NY United States
Institute for Plant Molecular and Cell Biology UPV CSIC 46022 Valencia Spain
Max Planck Institut für Molekulare Pflanzenphysiologie Am Mühlenberg1 D 14476 Potsdam Golm Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22010894
- 003
- CZ-PrNML
- 005
- 20220506130434.0
- 007
- ta
- 008
- 220425s2022 be f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ymben.2022.01.004 $2 doi
- 035 __
- $a (PubMed)35031492
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a be
- 100 1_
- $a Mi, Jianing $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- 245 12
- $a A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato / $c J. Mi, JG. Vallarino, I. Petřík, O. Novák, SM. Correa, M. Chodasiewicz, M. Havaux, M. Rodriguez-Concepcion, S. Al-Babili, AR. Fernie, A. Skirycz, JC. Moreno
- 520 9_
- $a Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
- 650 _2
- $a biomasa $7 D018533
- 650 _2
- $a biosyntetické dráhy $x genetika $7 D053898
- 650 _2
- $a karotenoidy $x metabolismus $7 D002338
- 650 12
- $a Solanum lycopersicum $x genetika $x metabolismus $7 D018551
- 650 _2
- $a fyziologický stres $7 D013312
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vallarino, Jose G $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
- 700 1_
- $a Petřík, Ivan $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- 700 1_
- $a Novák, Ondřej $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
- 700 1_
- $a Correa, Sandra M $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
- 700 1_
- $a Chodasiewicz, Monika $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
- 700 1_
- $a Havaux, Michel $u Aix-Marseille University, CEA, CNRS UMR7265, BIAM, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
- 700 1_
- $a Rodriguez-Concepcion, Manuel $u Institute for Plant Molecular and Cell Biology (IBMCP) UPV-CSIC, 46022, Valencia, Spain
- 700 1_
- $a Al-Babili, Salim $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- 700 1_
- $a Fernie, Alisdair R $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
- 700 1_
- $a Skirycz, Aleksandra $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany; Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- 700 1_
- $a Moreno, Juan C $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany. Electronic address: juancamilo.morenobeltran@KAUST.edu.sa
- 773 0_
- $w MED00008640 $t Metabolic engineering $x 1096-7184 $g Roč. 70, č. - (2022), s. 166-180
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35031492 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506130427 $b ABA008
- 999 __
- $a ok $b bmc $g 1788828 $s 1162092
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 70 $c - $d 166-180 $e 20220111 $i 1096-7184 $m Metabolic engineering $n Metab Eng $x MED00008640
- LZP __
- $a Pubmed-20220425