• Something wrong with this record ?

A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato

J. Mi, JG. Vallarino, I. Petřík, O. Novák, SM. Correa, M. Chodasiewicz, M. Havaux, M. Rodriguez-Concepcion, S. Al-Babili, AR. Fernie, A. Skirycz, JC. Moreno

. 2022 ; 70 (-) : 166-180. [pub] 20220111

Language English Country Belgium

Document type Journal Article, Research Support, Non-U.S. Gov't

Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22010894
003      
CZ-PrNML
005      
20220506130434.0
007      
ta
008      
220425s2022 be f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ymben.2022.01.004 $2 doi
035    __
$a (PubMed)35031492
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a be
100    1_
$a Mi, Jianing $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
245    12
$a A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato / $c J. Mi, JG. Vallarino, I. Petřík, O. Novák, SM. Correa, M. Chodasiewicz, M. Havaux, M. Rodriguez-Concepcion, S. Al-Babili, AR. Fernie, A. Skirycz, JC. Moreno
520    9_
$a Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
650    _2
$a biomasa $7 D018533
650    _2
$a biosyntetické dráhy $x genetika $7 D053898
650    _2
$a karotenoidy $x metabolismus $7 D002338
650    12
$a Solanum lycopersicum $x genetika $x metabolismus $7 D018551
650    _2
$a fyziologický stres $7 D013312
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vallarino, Jose G $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
700    1_
$a Petřík, Ivan $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
700    1_
$a Novák, Ondřej $u Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
700    1_
$a Correa, Sandra M $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
700    1_
$a Chodasiewicz, Monika $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
700    1_
$a Havaux, Michel $u Aix-Marseille University, CEA, CNRS UMR7265, BIAM, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
700    1_
$a Rodriguez-Concepcion, Manuel $u Institute for Plant Molecular and Cell Biology (IBMCP) UPV-CSIC, 46022, Valencia, Spain
700    1_
$a Al-Babili, Salim $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
700    1_
$a Fernie, Alisdair R $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
700    1_
$a Skirycz, Aleksandra $u Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany; Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
700    1_
$a Moreno, Juan C $u Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany. Electronic address: juancamilo.morenobeltran@KAUST.edu.sa
773    0_
$w MED00008640 $t Metabolic engineering $x 1096-7184 $g Roč. 70, č. - (2022), s. 166-180
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35031492 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130427 $b ABA008
999    __
$a ok $b bmc $g 1788828 $s 1162092
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 70 $c - $d 166-180 $e 20220111 $i 1096-7184 $m Metabolic engineering $n Metab Eng $x MED00008640
LZP    __
$a Pubmed-20220425

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...