Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Prevalence of Antifungal Resistance, Genetic Basis of Acquired Azole and Echinocandin Resistance, and Genotyping of Candida krusei Recovered from an International Collection

HO. Khalifa, V. Hubka, A. Watanabe, M. Nagi, Y. Miyazaki, T. Yaguchi, K. Kamei

. 2022 ; 66 (2) : e0185621. [pub] 20211206

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22010990

E-zdroje NLK Online Plný text

Free Medical Journals od 1972 do Před 6 měsíci
Freely Accessible Science Journals od 1995 do Před 6 měsíci
PubMed Central od 1972 do Před 6 měsíci
Europe PubMed Central od 1972 do Před 6 měsíci
Open Access Digital Library od 1972-01-01
Open Access Digital Library od 1972-01-01

This study was designed to evaluate the prevalence of antifungal resistance, genetic mechanisms associated with in vitro induction of azole and echinocandin resistance and genotyping of Candida krusei, which is intrinsically resistant to fluconazole and is recovered from clinical and nonclinical sources from different countries. Our results indicated that all the isolates were susceptible or had the wild phenotype (WT) to azoles, amphotericin B, and only 1.27% showed non-WT for flucytosine. Although 70.88% of the isolates were resistant to caspofungin, none of them were categorized as echinocandin-resistant as all were susceptible to micafungin and no FKS1 hot spot 1 (HS1) or HS2 mutations were detected. In vitro induction of azole and echinocandin resistance confirmed the rapid development of resistance at low concentrations of fluconazole (4 μg/ml), voriconazole (0.06 μg/ml), and micafungin (0.03 μg/ml), with no difference between clinical and nonclinical isolates in the resistance development. Overexpression of ABC1 gene and FKS1 HS1 mutations were the major mechanisms responsible for azole and echinocandin resistance, respectively. Genotyping of our 79 isolates coupled with 217 other isolates from different sources and geography confirmed that the isolates belong to two main subpopulations, with isolates from human clinical material and Asia being more predominant in cluster 1, and environmental and animals isolates and those from Europe in cluster 2. Our results are of critical concern, since realizing that the C. krusei resistance mechanisms and their genotyping are crucial for guiding specific therapy and for exploring the potential infection source.

000      
00000naa a2200000 a 4500
001      
bmc22010990
003      
CZ-PrNML
005      
20220506130457.0
007      
ta
008      
220425s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/AAC.01856-21 $2 doi
035    __
$a (PubMed)34871096
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Khalifa, Hazim O $u Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan $u Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt $1 https://orcid.org/0000000198619693
245    10
$a Prevalence of Antifungal Resistance, Genetic Basis of Acquired Azole and Echinocandin Resistance, and Genotyping of Candida krusei Recovered from an International Collection / $c HO. Khalifa, V. Hubka, A. Watanabe, M. Nagi, Y. Miyazaki, T. Yaguchi, K. Kamei
520    9_
$a This study was designed to evaluate the prevalence of antifungal resistance, genetic mechanisms associated with in vitro induction of azole and echinocandin resistance and genotyping of Candida krusei, which is intrinsically resistant to fluconazole and is recovered from clinical and nonclinical sources from different countries. Our results indicated that all the isolates were susceptible or had the wild phenotype (WT) to azoles, amphotericin B, and only 1.27% showed non-WT for flucytosine. Although 70.88% of the isolates were resistant to caspofungin, none of them were categorized as echinocandin-resistant as all were susceptible to micafungin and no FKS1 hot spot 1 (HS1) or HS2 mutations were detected. In vitro induction of azole and echinocandin resistance confirmed the rapid development of resistance at low concentrations of fluconazole (4 μg/ml), voriconazole (0.06 μg/ml), and micafungin (0.03 μg/ml), with no difference between clinical and nonclinical isolates in the resistance development. Overexpression of ABC1 gene and FKS1 HS1 mutations were the major mechanisms responsible for azole and echinocandin resistance, respectively. Genotyping of our 79 isolates coupled with 217 other isolates from different sources and geography confirmed that the isolates belong to two main subpopulations, with isolates from human clinical material and Asia being more predominant in cluster 1, and environmental and animals isolates and those from Europe in cluster 2. Our results are of critical concern, since realizing that the C. krusei resistance mechanisms and their genotyping are crucial for guiding specific therapy and for exploring the potential infection source.
650    _2
$a zvířata $7 D000818
650    _2
$a antifungální látky $x farmakologie $x terapeutické užití $7 D000935
650    12
$a azoly $x farmakologie $7 D001393
650    _2
$a fungální léková rezistence $x genetika $7 D025141
650    12
$a echinokandiny $x farmakologie $7 D054714
650    _2
$a genotyp $7 D005838
650    _2
$a mikrobiální testy citlivosti $7 D008826
650    _2
$a Pichia $7 D010843
650    _2
$a prevalence $7 D015995
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hubka, Vit $u Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic $u Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic $u Division of Bio-resources, Medical Mycology Research Center, Chiba University, Chiba, Japan $1 https://orcid.org/0000000345836496 $7 mzk2016904736
700    1_
$a Watanabe, Akira $u Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan $1 https://orcid.org/0000000230572937
700    1_
$a Nagi, Minoru $u Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan $u Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
700    1_
$a Miyazaki, Yoshitsugu $u Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan $1 https://orcid.org/0000000189420869
700    1_
$a Yaguchi, Takashi $u Division of Bio-resources, Medical Mycology Research Center, Chiba University, Chiba, Japan
700    1_
$a Kamei, Katsuhiko $u Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
773    0_
$w MED00009215 $t Antimicrobial agents and chemotherapy $x 1098-6596 $g Roč. 66, č. 2 (2022), s. e0185621
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34871096 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130450 $b ABA008
999    __
$a ok $b bmc $g 1788882 $s 1162188
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 66 $c 2 $d e0185621 $e 20211206 $i 1098-6596 $m Antimicrobial agents and chemotherapy $n Antimicrob Agents Chemother $x MED00009215
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...