Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis

A. Korotkov, NS. Sim, MJ. Luinenburg, JJ. Anink, J. van Scheppingen, TS. Zimmer, A. Bongaarts, DWM. Broekaart, C. Mijnsbergen, FE. Jansen, W. Van Hecke, WGM. Spliet, PC. van Rijen, M. Feucht, JA. Hainfellner, P. Kršek, J. Zamecnik, PB. Crino, K....

. 2021 ; 47 (6) : 796-811. [pub] 20210614

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22012168

AIMS: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.

Brigham and Women's Hospital Harvard Medical School Boston MA USA

Center for Neuroscience Swammerdam Institute for Life Sciences University of Amsterdam Amsterdam The Netherlands

Chalfont Centre for Epilepsy Chalfont St Peter UK

Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy

Department of Child Neurology Medical University of Warsaw Warsaw Poland

Department of Clinical and Experimental Epilepsy University College London London UK

Department of Development and Regeneration Section Pediatric Neurology University Hospitals KU Leuven Leuven Belgium

Department of Neuroimmunology Netherlands Institute for Neuroscience Amsterdam The Netherlands

Department of Neurology and Epileptology The Children's Memorial Health Institute Warsaw Poland

Department of Neurology University of Maryland School of Medicine Baltimore MD USA

Department of Paediatric Neurology University Medical Center Utrecht Utrecht The Netherlands

Department of Pathology Amsterdam UMC University of Amsterdam Amsterdam Neuroscience Amsterdam The Netherlands

Department of Pathology and Molecular Medicine 2nd Faculty of Medicine and Motol University Hospital Prague Czech Republic

Department of Pathology University Medical Center Utrecht Utrecht The Netherlands

Department of Pediatric Neurology 2nd Faculty of Medicine and Motol University Hospital Prague Czech Republic

Department of Pediatrics Medical University Vienna Vienna Austria

Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea

Institute of Neurology Medical University Vienna Vienna Austria

Pediatric Neurology Unit Universitair Ziekenhuis Brussel Brussels Belgium

SoVarGen Inc Daejeon Republic of Korea

Stichting Epilepsie Instellingen Nederland Heemstede The Netherlands

University Medical Center Brain Centre Rudolf Magnus Institute for Neuroscience Utrecht The Netherlands

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22012168
003      
CZ-PrNML
005      
20220506130126.0
007      
ta
008      
220425s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/nan.12717 $2 doi
035    __
$a (PubMed)33942341
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Korotkov, Anatoly $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000283136282
245    10
$a MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis / $c A. Korotkov, NS. Sim, MJ. Luinenburg, JJ. Anink, J. van Scheppingen, TS. Zimmer, A. Bongaarts, DWM. Broekaart, C. Mijnsbergen, FE. Jansen, W. Van Hecke, WGM. Spliet, PC. van Rijen, M. Feucht, JA. Hainfellner, P. Kršek, J. Zamecnik, PB. Crino, K. Kotulska, L. Lagae, AC. Jansen, DJ. Kwiatkowski, S. Jozwiak, P. Curatolo, A. Mühlebner, JH. Lee, JD. Mills, EA. van Vliet, E. Aronica
520    9_
$a AIMS: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a zvířata $7 D000818
650    _2
$a astrocyty $x metabolismus $7 D001253
650    _2
$a mozek $x růst a vývoj $x patologie $7 D001921
650    _2
$a mozková kůra $x patologie $7 D002540
650    _2
$a dítě $7 D002648
650    _2
$a předškolní dítě $7 D002675
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a kojenec $7 D007223
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a mikro RNA $x genetika $x metabolismus $7 D035683
650    _2
$a neurony $x patologie $7 D009474
650    _2
$a signální transdukce $x genetika $7 D015398
650    _2
$a tuberózní skleróza $x komplikace $x genetika $x patologie $7 D014402
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sim, Nam Suk $u Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
700    1_
$a Luinenburg, Mark J $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
700    1_
$a Anink, Jasper J $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
700    1_
$a van Scheppingen, Jackelien $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
700    1_
$a Zimmer, Till S $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000268693697
700    1_
$a Bongaarts, Anika $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000314514240
700    1_
$a Broekaart, Diede W M $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000248420659
700    1_
$a Mijnsbergen, Caroline $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
700    1_
$a Jansen, Floor E $u Department of Paediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a Van Hecke, Wim $u Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a Spliet, Wim G M $u Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a van Rijen, Peter C $u University Medical Center, Brain Centre, Rudolf Magnus Institute for Neuroscience, Utrecht, The Netherlands
700    1_
$a Feucht, Martha $u Department of Pediatrics, Medical University Vienna, Vienna, Austria
700    1_
$a Hainfellner, Johannes A $u Institute of Neurology, Medical University Vienna, Vienna, Austria
700    1_
$a Kršek, Pavel $u Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
700    1_
$a Zamecnik, Josef $u Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
700    1_
$a Crino, Peter B $u Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA $1 https://orcid.org/0000000262323740
700    1_
$a Kotulska, Katarzyna $u Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland $1 https://orcid.org/000000025015250X
700    1_
$a Lagae, Lieven $u Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium $1 https://orcid.org/0000000271180139
700    1_
$a Jansen, Anna C $u Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium $1 https://orcid.org/0000000238352824
700    1_
$a Kwiatkowski, David J $u Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA $1 https://orcid.org/0000000256685219
700    1_
$a Jozwiak, Sergiusz $u Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland $u Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland $1 https://orcid.org/0000000333506326
700    1_
$a Curatolo, Paolo $u Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
700    1_
$a Mühlebner, Angelika $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000191027353
700    1_
$a Lee, Jeong H $u Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea $u SoVarGen, Inc, Daejeon, Republic of Korea $1 https://orcid.org/000000022299630X
700    1_
$a Mills, James D $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Department of Clinical and Experimental Epilepsy, University College London, London, UK $u Chalfont Centre for Epilepsy, Chalfont St Peter, UK $1 https://orcid.org/0000000299102933
700    1_
$a van Vliet, Erwin A $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands $1 https://orcid.org/0000000157473202
700    1_
$a Aronica, Eleonora $u Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands $1 https://orcid.org/0000000235423770
773    0_
$w MED00003495 $t Neuropathology and applied neurobiology $x 1365-2990 $g Roč. 47, č. 6 (2021), s. 796-811
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33942341 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130118 $b ABA008
999    __
$a ok $b bmc $g 1789667 $s 1163369
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 47 $c 6 $d 796-811 $e 20210614 $i 1365-2990 $m Neuropathology and applied neurobiology $n Neuropathol Appl Neurobiol $x MED00003495
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...