-
Je něco špatně v tomto záznamu ?
Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging
R. Mareček, P. Říha, M. Bartoňová, M. Kojan, M. Lamoš, M. Gajdoš, L. Vojtíšek, M. Mikl, M. Bartoň, I. Doležalová, M. Pail, O. Strýček, M. Pažourková, M. Brázdil, I. Rektor
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2020
PubMed Central
od 1998
ProQuest Central
od 2021-08-01
Medline Complete (EBSCOhost)
od 2012-07-01
Health & Medicine (ProQuest)
od 2021-08-01
Wiley-Blackwell Open Access Titles
od 1996
ROAD: Directory of Open Access Scholarly Resources
od 1993
PubMed
33772952
DOI
10.1002/hbm.25413
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie parciální diagnostické zobrazování MeSH
- jednofotonová emisní výpočetní tomografie metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- multimodální zobrazování MeSH
- neurozobrazování metody MeSH
- pozitronová emisní tomografie metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22012399
- 003
- CZ-PrNML
- 005
- 20220506125933.0
- 007
- ta
- 008
- 220425s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/hbm.25413 $2 doi
- 035 __
- $a (PubMed)33772952
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mareček, Radek $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000183993455
- 245 10
- $a Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging / $c R. Mareček, P. Říha, M. Bartoňová, M. Kojan, M. Lamoš, M. Gajdoš, L. Vojtíšek, M. Mikl, M. Bartoň, I. Doležalová, M. Pail, O. Strýček, M. Pažourková, M. Brázdil, I. Rektor
- 520 9_
- $a Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a epilepsie parciální $x diagnostické zobrazování $7 D004828
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a multimodální zobrazování $7 D064847
- 650 _2
- $a neurozobrazování $x metody $7 D059906
- 650 _2
- $a pozitronová emisní tomografie $x metody $7 D049268
- 650 _2
- $a jednofotonová emisní výpočetní tomografie $x metody $7 D015899
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Říha, Pavel $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Bartoňová, Michaela $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Kojan, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Lamoš, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Gajdoš, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Vojtíšek, Lubomír $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000240276568
- 700 1_
- $a Mikl, Michal $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/000000031190346X
- 700 1_
- $a Bartoň, Marek $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- 700 1_
- $a Doležalová, Irena $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Pail, Martin $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Strýček, Ondřej $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Pažourková, Marta $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Brázdil, Milan $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 700 1_
- $a Rektor, Ivan $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- 773 0_
- $w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 42, č. 9 (2021), s. 2921-2930
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33772952 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506125926 $b ABA008
- 999 __
- $a ok $b bmc $g 1789831 $s 1163600
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 42 $c 9 $d 2921-2930 $e 20210327 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
- LZP __
- $a Pubmed-20220425