• Je něco špatně v tomto záznamu ?

Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging

R. Mareček, P. Říha, M. Bartoňová, M. Kojan, M. Lamoš, M. Gajdoš, L. Vojtíšek, M. Mikl, M. Bartoň, I. Doležalová, M. Pail, O. Strýček, M. Pažourková, M. Brázdil, I. Rektor

. 2021 ; 42 (9) : 2921-2930. [pub] 20210327

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22012399

Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22012399
003      
CZ-PrNML
005      
20220506125933.0
007      
ta
008      
220425s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/hbm.25413 $2 doi
035    __
$a (PubMed)33772952
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mareček, Radek $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000183993455
245    10
$a Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging / $c R. Mareček, P. Říha, M. Bartoňová, M. Kojan, M. Lamoš, M. Gajdoš, L. Vojtíšek, M. Mikl, M. Bartoň, I. Doležalová, M. Pail, O. Strýček, M. Pažourková, M. Brázdil, I. Rektor
520    9_
$a Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.
650    _2
$a dospělí $7 D000328
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a epilepsie parciální $x diagnostické zobrazování $7 D004828
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a multimodální zobrazování $7 D064847
650    _2
$a neurozobrazování $x metody $7 D059906
650    _2
$a pozitronová emisní tomografie $x metody $7 D049268
650    _2
$a jednofotonová emisní výpočetní tomografie $x metody $7 D015899
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Říha, Pavel $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic
700    1_
$a Bartoňová, Michaela $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic
700    1_
$a Kojan, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Lamoš, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Gajdoš, Martin $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Vojtíšek, Lubomír $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000240276568
700    1_
$a Mikl, Michal $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $1 https://orcid.org/000000031190346X
700    1_
$a Bartoň, Marek $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
700    1_
$a Doležalová, Irena $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Pail, Martin $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Strýček, Ondřej $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Medical Faculty, Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Pažourková, Marta $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Brázdil, Milan $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
700    1_
$a Rektor, Ivan $u Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic $u Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
773    0_
$w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 42, č. 9 (2021), s. 2921-2930
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33772952 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506125926 $b ABA008
999    __
$a ok $b bmc $g 1789831 $s 1163600
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 42 $c 9 $d 2921-2930 $e 20210327 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...